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Prediction performance 
and fairness heterogeneity 
in cardiovascular risk models
Uri Kartoun1,6, Shaan Khurshid2,3,6, Bum Chul Kwon1, Aniruddh P. Patel2,4, Puneet Batra5, 
Anthony Philippakis2, Amit V. Khera2,4, Patrick T. Ellinor2,3, Steven A. Lubitz2,3 & 
Kenney Ng1*

Prediction models are commonly used to estimate risk for cardiovascular diseases, to inform diagnosis 
and management. However, performance may vary substantially across relevant subgroups of the 
population. Here we investigated heterogeneity of accuracy and fairness metrics across a variety 
of subgroups for risk prediction of two common diseases: atrial fibrillation (AF) and atherosclerotic 
cardiovascular disease (ASCVD). We calculated the Cohorts for Heart and Aging in Genomic 
Epidemiology Atrial Fibrillation (CHARGE-AF) score for AF and the Pooled Cohort Equations (PCE) 
score for ASCVD in three large datasets: Explorys Life Sciences Dataset (Explorys, n = 21,809,334), 
Mass General Brigham (MGB, n = 520,868), and the UK Biobank (UKBB, n = 502,521). Our results 
demonstrate important performance heterogeneity across subpopulations defined by age, sex, and 
presence of preexisting disease, with fairly consistent patterns across both scores. For example, 
using CHARGE-AF, discrimination declined with increasing age, with a concordance index of 0.72 [95% 
CI 0.72–0.73] for the youngest (45–54 years) subgroup to 0.57 [0.56–0.58] for the oldest (85–90 years) 
subgroup in Explorys. Even though sex is not included in CHARGE-AF, the statistical parity difference 
(i.e., likelihood of being classified as high risk) was considerable between males and females within 
the 65–74 years subgroup with a value of − 0.33 [95% CI − 0.33 to − 0.33]. We also observed weak 
discrimination (i.e., < 0.7) and suboptimal calibration (i.e., calibration slope outside of 0.7–1.3) in large 
subsets of the population; for example, all individuals aged 75 years or older in Explorys (17.4%). Our 
findings highlight the need to characterize and quantify the behavior of clinical risk models within 
specific subpopulations so they can be used appropriately to facilitate more accurate, consistent, and 
equitable assessment of disease risk.

Abbreviations
1 K PY  1000 Patient years
AF  Atrial fibrillation
ASCVD  Atherosclerotic cardiovascular disease
CHARGE-AF  Cohorts for Heart and Aging Research in Genomic Epidemiology atrial fibrillation
CPT  Current Procedural Terminology
DBP  Diastolic blood pressure
EHR  Electronic health record
HDL  High-density lipoprotein
HF  Heart failure
ICD  International Classification of Diseases
Inc  Incidence
MGB  Mass General Brigham
MI  Myocardial infarction
PCE  Pooled Cohort Equations
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SBP  Systolic blood pressure
SD  Standard deviation
SHR  Standardized hazard ratio
T2DM  Type 2 diabetes mellitus
TC  Total cholesterol
TIA  Transient ischemic attack
UKBB  United Kingdom Biobank

Variability in the accuracy of models used to classify cardiovascular disease (CVD) risk has frequently been 
 reported1,2, with findings highlighting that performance appears to vary on the basis of  sex3, race (in the  US4–6 
and out of the  US7–9), and the presence of specific clinical  factors10,11. With the continued growth of large collec-
tions of electronic health records (EHRs) accessible for research purposes, it is now possible to more thoroughly 
explore and better understand the performance heterogeneity of risk estimators, including within more refined 
subgroups.

CVD risk models are commonly used to prioritize individuals for preventive counseling (e.g., weight loss, 
alcohol cessation) and therapies (e.g., cholesterol-lowering medication). For atherosclerotic CVD (ASCVD), 
risk estimation using the Pooled Cohort Equations (PCE) is recommended by U.S. guidelines for determining 
whether individuals without established ASCVD should be considered for cholesterol-lowering  therapy12. For 
atrial fibrillation (AF), in which the presence of arrhythmia is associated with an increased risk of stroke and heart 
failure (HF), risk estimation may also prioritize individuals for screening to detect asymptomatic  disease13,14. 
The Cohorts for Heart and Aging Research in Genomic Epidemiology AF (CHARGE-AF)  score15,16 has consist-
ently demonstrated good predictive performance for incident AF risk across multiple community  cohorts17,18 
and EHR-based  repositories19.

Leveraging three large and distinct datasets, one from a prospective cohort and two from electronic health 
records, in total covering millions of individuals, we aimed to quantify the robustness of established models 
used to predict risk for AF and ASCVD. Specifically, we deployed the CHARGE-AF and PCE scores within 
subpopulations defined by clinically relevant strata (e.g., age, sex, and presence of relevant diseases at baseline), 
and quantified model performance, including discrimination, calibration, and fairness metrics, assessing for 
important and consistent patterns of  heterogeneity20.

Methods
Data sources. A high-level summary of our methodology is illustrated in Supplementary Fig. 1. We ana-
lyzed 3 independent data sources: the Explorys Dataset, Mass General Brigham (MGB), and the UK Biobank 
(UKBB).

The Explorys Dataset is comprised of the healthcare data of over 21 million individuals, pooled from differ-
ent healthcare systems with distinct EHRs that have been previously used for medical  research19,21,22. Data were 
statistically de-identified23, standardized, normalized using common ontologies, and made searchable after being 
uploaded to a Health Insurance Portability and Accountability Act-enabled platform. The data included EHR 
entries for all patients who were seen between January 1, 1999, and December 31, 2020.

MGB is a large healthcare network serving the New England region of the US. We utilized the Community 
Care Cohort  Project24, an EHR dataset comprising over 520,000 individuals who received longitudinal primary 
within the MGB system, which includes 7 academic and community hospitals with associated outpatient clinics.

The UKBB is a prospective cohort of over 500,000 participants enrolled during 2006–201025. Briefly, approxi-
mately 9.2 million individuals aged 40–69 years living within 25 miles of 22 assessment centers in the UK were 
invited, and 5.4% participated in the baseline assessment. Questionnaires and physical measures were collected 
at recruitment, and all participants are followed for outcomes through linkage to national health-related data-
sets provided by the Health & Social Care Information Centre, the Patient Episode Database for Wales, and by 
Scottish Morbidity  Records26. We confirm that all methods were performed in accordance with the relevant 
guidelines and regulations.

Cohort construction. To ensure adequate data ascertainment and follow-up, we included individuals in 
Explorys with at least two outpatient encounters greater than or equal to 2 years  apart27. Individuals in the MGB 
dataset had at least one pair of primary care office visits 1–3 years apart. We included all individuals who enrolled 
in the UKBB study, excluding those who subsequently withdrew consent.

In Explorys, the start of follow-up was defined as the first encounter following the second qualifying outpa-
tient encounter. In MGB, the start of follow-up was defined as the second office visit of the earliest qualifying 
pair. In UKBB, the start of follow-up was the initial assessment visit. In each dataset, baseline variables were 
defined at or before the start of follow-up. Individuals with missing data for AF risk estimation at baseline were 
excluded. We refer to the AF analysis sets as the “AF Subsets”. We defined the ASCVD analysis set analogously, 
with the exclusion of individuals with missing data needed to calculate the PCE score (“ASCVD Subsets”). Full 
details of the cohort construction for the 3 datasets are shown in Supplementary Tables I–VI.

Clinical factors. Age, sex, race, and smoking status were defined using EHR fields in Explorys and MGB 
and were self-reported at the initial assessment visit in UKBB. Height, weight, blood pressure, total cholesterol, 
and high-density lipoprotein cholesterol values were similarly extracted from the EHR in MGB and Explorys 
and measured at the baseline assessment in  UKBB19,28. For patients with multiple eligible values in the baseline 
period, only the most recent was used. Smoking status was classified as present or absent, and race was classified 
as White or Black. Since dedicated PCE models are available only for White and Black individuals, as performed 
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 previously29 the models developed for Black individuals were utilized for individuals identifying as Black, while 
the models developed for White individuals were utilized for individuals of all other races. The presence of clini-
cal comorbidities was ascertained using diagnostic (International Classification of Diseases-9th [ICD-9] and 
-10th [ICD-10] revisions) and procedural (Current Procedural Terminology, CPT) codes, either extracted from 
the EHR (Explorys and MGB), or from linked national health record data (UKBB). All covariates were used in 
accordance with the CHARGE-AF and PCE  definitions12,16,30. Clinical factor definitions for all outcomes and 
covariates appear in Supplementary Table VII.

Follow-up and outcome definitions. The primary outcomes were the 5-year incident AF (for the AF 
Subsets), and the 10-year incident ASCVD (for the ASCVD Subsets). In the EHR samples, incident AF was 
defined using a previously validated EHR-based AF ascertainment algorithm (positive predictive value 92%), 
with the exception that electrocardiographic criteria were not used in Explorys given absence of electrocardio-
gram  reports31. In the UKBB, AF was defined using a previously published set of self-reported data and diagnos-
tic and procedural codes, which had been previously validated in an external dataset with a positive predictive 
value of 92%32. Incident ASCVD was defined as a composite of myocardial infarction (MI) and stroke, each 
defined using diagnosis  codes33. The codes used to define ASCVD in UKBB and Explorys have been previously 
 published19,32, and those used in MGB have been previously validated with positive predictive value of ≥ 85%27. 
Outcome definitions are shown in Supplementary Table VII.

All models were censored at last follow-up or the end of the relevant prediction window (i.e., 5 years for 
CHARGE-AF and 10 years for the PCE). Last follow-up was defined as the last office visit or hospital encounter 
in Explorys, last EHR encounter in MGB (or administrative censoring date of August 31, 2019), and date of last 
available linked hospital data in UKBB. Since date of death is known in UKBB and MGB, follow-up was also 
censored at death in these analyses. However, since the precise date of death was not available in Explorys, we 
did not attempt to censor death (i.e., death was presumed to occur after the last office visit or hospital encounter).

Subgroup types. Per the original design of the PCE, we assessed the 4 sex- and race-specific models within 
their respective populations (Black women, Black men, White women, White men). All populations were fur-
ther stratified into 10-year age ranges. These age-based analyses included 6 age strata for CHARGE-AF (45–54, 
55–64, 65–74, 75–84, 85–90, and all) and 5 age strata for PCE (40–49, 50–59, 60–69, 70–79, and all). In the AF 
analyses, we evaluated the following additional subgroups: females, males, Black race, White race, prevalent HF, 
and prevalent stroke. In the PCE analyses, we also evaluated prevalent HF.

Quantification of model performance. We computed incidence rates for each outcome, reported per 
1000 patient years (1 K PY). For each risk score and subgroup, we assessed the association between the risk 
score and its respective outcome using Cox proportional hazards regression, with 5-year AF as the outcome of 
interest for CHARGE-AF and 10-year ASCVD as the outcome of interest for PCE. Since the CHARGE-AF and 
PCE models did not account for death as a competing risk, date of death is not available in Explorys, and the 
proportion of individuals who died prior to the end of follow-up was low in both UKBB (AF 1.6%, PCE 3.1%) 
and MGB (AF 0.3%, PCE 0.4%), we did not model the competing risk of death. Hazard ratios were scaled by 
the within-sample standard deviation (SD) of the linear predictor of each score for comparability (Standardized 
Hazard Ratio [SHR]). Therefore, the SHR reflects the relative increase in event hazard observed with a 1-SD 
increase in the respective linear predictor. We also assessed the discrimination of each score by calculating Har-
rell’s concordance index. We compared calibration slopes, defined as the beta coefficient of a univariable Cox 
proportional hazards model with the prediction target as the outcome and the linear predictor of the respective 
risk score as the sole covariate, where an optimally calibrated slope has a value of  one34. To calculate 95% confi-
dence intervals, we applied bootstrap resampling with 100 replicates.

For the purposes of identifying subgroups in which performance was particularly suboptimal, we utilized a 
concordance index of < 0.7. For calibration, in the absence of a consensus definition of a poor calibration slope, 
we utilized arbitrary calibration slope thresholds of < 0.7 (general tendency to overestimate) or > 1.3 (general 
tendency to underestimate) to define suboptimal calibration.

To assess performance heterogeneity beyond traditional model metrics, we calculated fairness measures, 
including statistical parity difference, true positive rate difference, and true negative rate  difference35. Such 
measures assess fairness within the context of a protected attribute (e.g., sex, race). Statistical parity difference 
represents differences in the predicted risk according to the score. True positive and negative rates represent dif-
ferences in sensitivity and specificity. These analyses focused on subgroups most likely to be affected by potential 
unfairness, including age, sex (female and male) and race (Black and White). A score is considered potentially 
unfair if it exhibits unexplained performance variation across different subpopulations. Fairness measures may 
be independent of traditional model metrics for accuracy (e.g., a score may provide very good discrimination 
within a subpopulation but could still be unfair).

For these analyses, the CHARGE-AF and PCE scores were converted to event probabilities using their pub-
lished  equations12,15. Where fairness metrics required application of binary risk cutoffs (i.e., true positive rate 
difference and false positive rate difference), we defined high AF risk as estimated 5-year AF risk ≥ 5.0% using 
CHARGE-AF19,36 and high ASCVD risk as estimated 10-year ASCVD risk ≥ 7.5%1,3,4,30.

All analyses were performed using R version 3.6, including the “survival,” “rms,” “data.table,” and “prodlim” 
 packages37.
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Results
A summary of baseline characteristics for the three datasets and their associated two outcomes is shown in 
Table 1, including mean (SD) for continuous measurements, percentage for binary attributes, and follow-up 
durations. For brevity, only the PCE model with the largest sample size (female-White; n = 1,763,103) is described 
in the sections below; results for all four PCE models are presented in Supplementary Table VIII and Supple-
mentary Fig. 2.

Association between age and incidence of AF and ASCVD. As shown in Fig.  1A (AF) and B 
(ASCVD), incidence rate increased with age in each dataset. Explorys and MGB showed similar incidence rates 
in each age group, whereas UKBB participants had substantially lower AF incidence. Similarly, ASCVD inci-
dence rate increased with age, but higher in Explorys compared to MGB and the UKBB. The effect of age on 
ASCVD within each of the four PCE groups is shown in Supplementary Table VIII.

Performance heterogeneity of CHARGE-AF. We observed that a variety of subgroups were affected by 
limited discrimination, suboptimal calibration, or both (Supplementary Tables X and XI); for example, discrimi-
nation was lower than 0.7 and calibration slope was out of the 0.7–1.3 range among individuals aged 75 years 
or older (17.4% in Explorys, 10.6% in MGB). Discrimination and calibration also met criteria for poor perfor-
mance among patients with prevalent HF (3.7% in Explorys, 1.9% in MGB).

Figure 2 summarizes performance measures for the CHARGE-AF score. Discrimination consistently 
decreased with increased age (Fig. 2A); for example, discrimination declined with increasing age from concord-
ance index of 0.721 [95% CI 0.716–0.726] for the youngest (45–54 years) subgroup to 0.566 [0.556–0.577], for 
the oldest (85–90 years) subgroup in Explorys. Discrimination was higher for females than for males, consistent 
with prior  findings1,16,19,36, whereas differences across White versus Black race were minor. Discrimination was 
substantially lower among individuals with prevalent HF and stroke.

We also observed miscalibration within subgroups of age. For all 3 datasets calibration slopes decreased with 
increasing age, reflecting a general tendency toward underestimation at younger ages and overestimation at 
older ages (Fig. 2B); for example, in Explorys, values declined from 1.222 [95% CI 1.198–1.246] for the youngest 
(45–54 years) subgroup to 0.422 [0.371–0.474] for the oldest (85–90 years) subgroup.

The strength of association between the CHARGE-AF score and incident AF (as measured using SHRs) 
decreased with older age (Fig. 2C); for example, SHR declined from 3.395 [95% CI 3.315–3.477] for the youngest 
(45–54 years) subgroup to 1.526 [1.449–1.606] for the oldest (85–90 years) subgroup in Explorys. Within strata 
defined by sex and race, SHRs were highest in the UKBB, followed by MGB and Explorys. SHRs were substantially 
lower among individuals with prevalent HF and stroke.

Unfair behaviors for CHARGE-AF. As shown in Fig. 3A, even though sex is not included in CHARGE-
AF, risk estimates using the CHARGE-AF model were much lower for females than for males, with regard to the 
population as a whole and particularly in the age groups 65–74 and 75–84; for example, the 65–74 years sub-
group had a statistical parity difference of − 0.331 [95% CI − 0.333 to − 0.329] in Explorys. As shown in Fig. 3B, 
consistent across each dataset, sensitivity was lower for females, particularly in intermediate age groups (65–74 

Table 1.  Baseline characteristics.

Incident AF (5 years) Incident ASCVD (10 years)

Explorys (N = 4,750,660) UKBB (N = 445,329) MGB (N = 174,644) Explorys (N = 3,656,680) UKBB (N = 408,154) MGB (N = 198,184)

N events 196,252 7404 7877 346,159 10,906 10,201

Median follow-up, years 
(Q1, Q3) 3.6 (1.6, 5.0) 5.0 (5.0, 5.0) 5.0 (2.3, 5.0) 3.8 (1.8, 6.6) 8.9 (8.2, 9.7) 6.8 (2.6, 10.0)

Characteristics % or mean (SD)

Female (%) 56.7 55.0 60.9 55.9 54.8 58.8

Age (years) 62.6 (10.8) 58.4 (7.0) 60.9 (10.0) 59.0 (10.7) 56.9 (8.1) 57.0 (10.3)

White race (%) 84.2 94.7 79.6 87.4 98.4 78.1

Smoking (%) 17.3 10.7 8.0 18.7 10.4 7.4

SBP (mmHg) 131 (18) 139 (19) 128 (17) 129 (17) 139 (20) 126 (17)

DBP (mmHg) 77 (11) 83 (10) 76 (10)

DBP, Height, and Weight were not necessary to calculate PCE scoresHeight (kg) 168.5 (10.9) 168.2 (9.2) 166.6 (10.4)

Weight (cm) 86.1 (22.1) 77.9 (15.8) 79.4 (19.5)

HDL (US: mg/dL; UK: 
mmol/L)

HDL and TC were not necessary to calculate CHARGE-AF scores
51 (17) 1.46 (0.4) 57 (18)

TC (US: mg/dL; UK: 
mmol/L) 189 (42) 5.7 (1.1) 195 (39)

Hypertensive therapy (%) 50.1 30.5 44.8 52.8 27.9 39.3

Diabetes (%) 21.3 2.5 16.0 21.4 5.0 14.8

Heart failure (%) 3.7 0.4 1.9 3.5 0.3 1.6
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and 75–84); for example, the 65–74 years subgroup had a sensitivity difference of − 0.311 [95% CI − 0.319 to 
− 0.304] in Explorys. As shown in Fig. 3C, specificity was higher for females in intermediate age groups (65–74 
and 75–84); for example, the 65–74 years subgroup had a specificity difference of 0.328 [95% CI 0.326–0.330] 
in Explorys.

Similar to the unfairness of pattens for sex, unfairness for race was notable in intermediate age groups (65–74 
and 75–84). As shown in Fig. 3D, risk estimates using the CHARGE-AF model were much lower for Black indi-
viduals than for White individuals, as expected since White race is a risk enhancing factor in the CHARGE-AF 
model; for example, the 75–84 years subgroup had statistical parity difference of − 0.228 [95% CI − 0.232 to 
− 0.225] in Explorys. Likely as a result of systematically lower predicted risk estimates, CHARGE-AF exhibited 

Figure 1.  Incidence rates per 1 K PY and population sizes. All population and subpopulation sizes and exact 
incidence rates are provided in Supplementary Table IX.

Figure 2.  Performance measures for CHARGE-AF. Prev. = Prevalence; HF = Heart failure.
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lower sensitivity (Fig. 3E) and greater specificity (Fig. 3F) among Black individuals; as an example, sensitivity 
difference was − 0.168 [95% CI − 0.180 to − 0.157], and specificity difference was 0.231 [0.228–0.235] for the 
75–84 years subgroup in Explorys. For both sex and race, behavior indicating unfairness was similar between 
Explorys and MGB but less prominent in the UKBB.

Performance heterogeneity of PCE. As with CHARGE-AF, we observed that a variety of subgroups 
were affected by limited discrimination, limited calibration, or both (Supplementary Tables XII and XIII). Only 
a few of the subgroups across the 3 datasets were associated with both good discrimination and calibration (e.g., 
female-White 40–49 in the UKBB with a percentage of 21.9% of the total patients in this subgroup).

Consistent with CHARGE-AF, discrimination using the PCE decreased with older age from a concordance 
index of 0.655 [95% CI 0.649–0.660] for the 40–49 years subgroup to 0.580 [0.577–0.582] for the 70–79 years 
subgroup in Explorys (Fig. 4A). This behavior was consistent across all 3 datasets. Discrimination among indi-
viduals with prevalent HF was similar to the overall 70–79 years subgroup.

We also observed suboptimal calibration using the PCE within subgroups of age, with consistently lower 
calibration slopes in the youngest and oldest groups, indicating an overall tendency to overestimate risk at 
extremes of age (Fig. 4B); for example, in Explorys, values were the lowest for the 40–49 years subgroup with 
a slope of 0.577 [95% CI 0.561–0.594], and 0.474 [0.460–0.487] for the 70–79 years subgroup, in comparison 
to values above 0.7 for the intermediate age subgroups. Similar to CHARGE-AF, calibration performance was 
limited among individuals with prevalent HF, again with a general tendency to overestimate risk.

Figure 3.  Fairness analysis for CHARGE-AF. Note that data was not available in the UKBB for the 75–84 and 
85–90 age subpopulations.

Figure 4.  Performance measures for PCE (Female-White). Prev. = Prevalence; HF = Heart failure. Refer to 
Supplementary Table VIII for additional PCE models.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12542  | https://doi.org/10.1038/s41598-022-16615-3

www.nature.com/scientificreports/

The strength of association between the PCE score on incident ASCVD (as measured using SHRs) was 
highest in intermediate age groups (50–59 and 60–69) compared to the younger (40–49) and older (70–79) age 
groups (Fig. 4C); for example, highest SHR was 1.956 [95% CI 1.927–1.985] for the 50–59 subgroup and 1.606 
[1.585–1.628] for the 70–79 subgroup, in Explorys.

Unfair behaviors for PCE. As shown in Fig. 5A, risk estimates using the PCE were much lower for females 
than for males in the overall population as well as within the intermediate age groups (50–59 and 60–69); for 
example, in Explorys, the 60–69 years subgroup had a statistical parity difference of − 0.426 [95% CI − 0.427 to 
− 0.424]. As shown in Fig. 5B, across all datasets, sensitivity was lower for females, especially in intermediate age 
groups (50–59 and 60–69); for example, the 50–59 years subgroup had a sensitivity difference of − 0.379 [95% 
CI − 0.386 to − 0.373] in Explorys. Specificity was higher among females (Fig. 5C), especially in intermediate 
age groups (50–59 and 60–69); for example, the 60–69 years subgroup had a specificity difference of 0.438 [95% 
CI 0.436–0.439] in Explorys. Overall, patterns observed on the basis of sex using the PCE were similar to those 
observed using CHARGE-AF.

As shown in Fig. 5D, unlike CHARGE-AF, risk estimates using the PCE were higher in Black individuals 
in all datasets; this effect was especially noticeable in intermediate age groups (50–59 and 60–69); for example, 
statistical parity difference between the 50–59 years subgroup was the largest compared to the other subgroups 
in Explorys at 0.247 [95% CI 0.244–0.250]. In contrast to CHARGE-AF, greater risk estimates led to increased 
sensitivity among Black individuals versus White individuals (Fig. 5E); for example, sensitivity difference between 
the 40–49 years and 50–59 years subgroups were the largest compared to the other subgroups in Explorys at 
0.224 [95% CI 0.211–0.237] and 0.237 [0.228–0.246], respectively. Differences in sensitivity on the basis of race 
decreased with increasing age in all 3 datasets, with very little difference observed in the oldest age group (70–79). 
As shown in Fig. 5F, across specific age ranges, specificity was lower for Black individuals than for White individu-
als; this effect was especially noticeable in intermediate age groups (50–59 and 60–69); for example, specificity 
difference between the 50–59 years subgroup was the greatest compared to the other subgroups in Explorys at 
− 0.241 [95% CI − 0.244 to − 0.239].

Discussion
We analyzed three large independent datasets including millions of individuals and identified important pat-
terns of performance heterogeneity across clinically relevant subgroups as indicated by standard performance 
measures including discrimination, calibration, SHRs, and fairness metrics. Our results build on previous efforts 
to understand estimation of AF and ASCVD risk in several key ways. First, we assessed the scores on very large 
databases, allowing us to quantify performance within granular subgroups. Second, we provide results applicable 
to 3 resources, allowing us to assess consistency in results across independent samples. Third, we perform analy-
ses of two distinct outcomes, which allows for identification of potential patterns of heterogeneity that may be 
shared across risk estimators for different conditions. Fourth, our results highlight the magnitude of important 

Figure 5.  Fairness analysis for PCE.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12542  | https://doi.org/10.1038/s41598-022-16615-3

www.nature.com/scientificreports/

limitations in performance affecting sizeable portions of the population, in particular patients at older ages and 
with prevalent conditions. Fifth, to our knowledge, our study is the first to report on fairness-related measures 
for the CHARGE-AF and PCE scores in relation to sex and race.

Patterns of variability were fairly consistent across the CHARGE-AF and PCE models. Importantly, we 
observed that discrimination and calibration were consistently worse at extremes of age, as well as for individu-
als with certain prevalent conditions (e.g., HF). Furthermore, we observed evidence of potentially unfair perfor-
mance, with significant differences in fairness metrics for sex and race in both scores. For instance, the sensitivity 
difference of both scores was much lower for females than males in the intermediate-age subgroups, suggesting 
that current scores may miss more women at high risk for events, potentially worsening existing sex-related 
treatment  gaps38. Overall, our findings underscore the importance of evaluating prognostic models across the 
many specific subpopulations in which risk prediction is intended, in order to better understand the accuracy 
and potential unfairness of the prognostic information used to drive clinical decisions at the point of care.

Our findings suggest that clinicians utilizing prognostic models should not assume that a given level of perfor-
mance in the overall population will translate to similar accuracy within a subgroup of the population to which 
their patient belongs. Consistent with prior findings suggesting good overall performance of CHARGE-AF17,18 
and the  PCE2,10 across multiple populations, we observed moderate or greater discrimination using each score 
in our datasets. However, we observed that multiple standard metrics (e.g., discrimination and calibration) vary 
substantially within subpopulations. Specifically, we observed a consistent pattern of decreasing discrimination 
for higher age groups, a finding which may be attributable to less variability in event risk among older indi-
viduals. Furthermore, since assessing discrimination within a subgroup defined by a certain feature precludes 
classification of risk on the basis of that feature (i.e., discrimination is adjusted), stratification by variables with 
substantial effects on event risk will decrease discrimination. Similar to discrimination, we also observed increas-
ing miscalibration in higher age groups, which may be related to greater average event risk. In addition to age, 
miscalibration related to baseline event risk may also be impacted by varying treatment patterns across different 
settings and over time. Ultimately, since the majority of incidents CVD occur among older individuals, more 
accurate models for an older population remains a critical unmet need. Future work is needed to assess whether 
models derived within specific subgroups of clinical importance may lead to better and more consistent model 
performance across important subsets of the population.

In addition to variation across standard model metrics, our findings also suggest that common prognostic 
models may have performance indicating unfairness across strata of sex and race. As discussed above, CHARGE-
AF had lower sensitivity and greater specificity among women. A similar pattern was observed among Black 
individuals. Although use of the PCE also led to lower sensitivity and greater specificity among women, it dem-
onstrated the opposite pattern (greater sensitivity and lower specificity) among Black individuals. It is notable 
that these differences exist despite the fact that the PCE has dedicated models specific to race and sex (i.e., there 
are 4 distinct equations). Since PCE model predictions were generally better calibrated among White individuals, 
our findings suggest that model derivation in populations having greater representation of women and Black 
individuals may lead to more accurate and generalizable models with less unfairness.

There are several potential strategies to mitigate the significant heterogeneity in performance we characterized 
and quantified in the current study. One strategy is to adjust models according to empirically observed patterns 
of unfairness, which has been previously proposed as a method to reduce unfairness and minimize overtreat-
ment of healthy  individuals7,39. Another approach is to reweight existing  models40–42 within each subgroup of 
the population, resulting in distinct weights for each subgroup of interest. Yet another strategy is to create new 
higher capacity models that include additional (e.g., socioeconomic deprivation)7,43 or more precisely defined 
predictors (e.g., granular race definitions), which may offer more consistent prognostic value across subgroups. 
Any chosen strategy should consider both calibration and discrimination not only separately but also jointly; 
for example, even if a mitigation strategy could handle limited calibration performance in a certain subgroup, 
effects may not translate to other subgroups. Furthermore, certain strategies may result in a tradeoff in which 
one measure is improved (e.g., discrimination), while another is worsened (e.g., fairness-related).

Our study has several limitations. First, despite analysis of three large datasets, the majority of individuals 
included were White, limiting the precision of subgroup-based estimates in Black individuals. Second, since 
dedicated PCE models are available only for White and Black individuals, as performed  previously29, the models 
for Black individuals were utilized for individuals identifying as Black, and the models for White individuals 
were utilized for individuals of all other races. Evidence suggests that cardiovascular risk and  outcomes5,29 may 
differ importantly on account of more granular classification of race and ethnicity, and therefore we acknowledge 
that our race classification may have contributed to observed heterogeneity in PCE performance. We submit 
that future work is warranted to develop more accurate methods of risk ASCVD risk stratification in these 
populations. Third, we were unable to assess the effects of socioeconomic  deprivation44–46 given the lack of 
available data in Explorys and MGB. Fourth, given that the CHARGE-AF and PCE scores did not model death 
as a competing risk, and death data are not available in the Explorys, we did not adjust for the competing risk of 
death (note that death rates within the windows of interest in the UKBB and MGB datasets were low). Fifth, as 
with any EHR-based study, misclassification of exposures and outcomes is possible. Additionally, cause of death 
data is available only in UKBB, and therefore fatal ASCVD events not resulting in hospitalization may have been 
missed in the EHR samples. To mitigate misclassification, we utilized previously published disease definitions 
and constructed our EHR samples to include individuals receiving longitudinal ambulatory care. Furthermore, 
predictive utility was similar to expectations for both scores in all 3 datasets compared to values observed from 
prior prospective cohort  studies12,15. Sixth, we have not applied recently proposed fairness metrics that assess 
individual fairness (rather than assessment at the population level)47,48. Sixth, although our findings provide 
important evidence of performance heterogeneity and potential unfairness in commonly used risk estimators, 
we did not explore mitigation methods.
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In summary, we evaluated the CHARGE-AF and the PCE scores in three independent datasets totaling over 5 
million individuals, identifying important performance heterogeneity and unfairness. The patterns we observed 
were consistent, including worse discrimination of risk among older individuals and substantial miscalibration 
at extremes of age. We also observed that use of common score thresholds may lead to unfairness on the basis 
of sex and race, which may worsen existing treatment gaps. Overall, users of current clinical risk stratification 
methods should exercise caution when interpreting risk estimates obtained in certain subgroups (e.g., extremes 
of age), and there is a critical need to develop more robust risk estimators that display more consistent accuracy 
and fairness.

Data availability
The institutional review boards of Mass General Brigham (MGB) and IBM approved this study and its methods, 
including the EHR cohort assembly using the Explorys Dataset, data extraction, and analyses. MGB data contains 
potentially identifying information and may not be shared publicly. Explorys data can be made available through 
a commercial license (for details see: https:// www. ibm. com/ downl oads/ cas/ 4P0QB 9JN). We are indebted to the 
UKBB and its participants who provided data for this analysis (UKBB Applications #7089 and #50658). All UKBB 
participants provided written informed consent. The UK Biobank was approved by the UK Biobank Research 
Ethics Committee (reference# 11/NW/0382). Source data are provided with this paper.
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