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Fig. 1. An overview of Clustervision on a dataset describing 400 paintings by the “Joy of Painting” artist Bob Ross. (A) Ranked List of
Clustering Results shows 15 different clustering results that are sorted by the aggregated quality measures; (B) Projection shows a
selected clustering result (highlighted in yellow in (A)) on a projection of data points colored according to corresponding clusters; (C)
Parallel Trends show the trends of feature values of data points within corresponding clusters in areas across parallel coordinates.
Cluster 1 (Green Color) is highlighted; (D) Cluster Detail shows quality measures of a selected individual cluster (Cluster 1); (E) Data
Point shows the feature value distribution of the selected cluster as well as the selected data point (Data Point 372 within Cluster 2).

Abstract—Clustering, the process of grouping together similar items into distinct partitions, is a common type of unsupervised machine
learning that can be useful for summarizing and aggregating complex multi-dimensional data. However, data can be clustered in
many ways, and there exist a large body of algorithms designed to reveal different patterns. While having access to a wide variety of
algorithms is helpful, in practice, it is quite difficult for data scientists to choose and parameterize algorithms to get the clustering results
relevant for their dataset and analytical tasks. To alleviate this problem, we built Clustervision, a visual analytics tool that helps ensure
data scientists find the right clustering among the large amount of techniques and parameters available. Our system clusters data
using a variety of clustering techniques and parameters and then ranks clustering results utilizing five quality metrics. In addition, users
can guide the system to produce more relevant results by providing task-relevant constraints on the data. Our visual user interface
allows users to find high quality clustering results, explore the clusters using several coordinated visualization techniques, and select
the cluster result that best suits their task. We demonstrate this novel approach using a case study with a team of researchers in the
medical domain and showcase that our system empowers users to choose an effective representation of their complex data.
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Clustering algorithms are a common type of unsupervised machine
learning that can be useful for summarizing and aggregating complex
multi-dimensional data to make it more interpretable. The goal of
clustering is to group together similar items into distinct clusters, so
items within a single cluster are similar to each other and different from
items outside the cluster. Data can be clustered in many ways, and there
is a rich history of techniques designed to achieve clustering results.
For instance, algorithms like k-means attempt to find cluster centers
that are representative of regions in the data. Other techniques like
agglomerative clustering start by declaring each item its own cluster and
then merge similar clusters into a hierarchy. Other advanced techniques
include DBSCAN, which attempt to find dense regions of data in the



feature space, or Spectral Clustering which reduces data to a low-
dimensional embedding and then clusters data. However, given a
particular dataset and analytical task, there are no systematic procedures
for knowing which algorithm will provide the best cluster. Among the
wide variety of algorithms and parameters, how do you choose which
to use?

Clustering is often an exploratory problem. Even if one has enough
CPUs to try all clustering techniques and parameters, it would still be
unclear which results to show users. Furthermore, looking at the same
dataset, different users might want to learn different aspects of datasets.
For example, when clustering electronic health records, cardiologists
might want to cluster patients by their cardiovascular symptoms, and
coaches might want to cluster patients by features relevant to their skills
of their sport. We need an interactive system for clustering to help users
gain new insights into datasets with confidence.

Therefore, we propose Clustervision, a visual analytics system that
meets this criteria by computing all reasonable clusterings for users,
but instead of presenting all options, it provides high quality and di-
verse clusterings. Quality is determined by evaluating the clustering
results using a variety of quality scoring metrics, which emphasize
different aspects of good clusters; we combine these metrics to provide
diverse recommendations. However, the goal is not to simply show
users the clustering result with the highest score according to some
metric, but rather to provide insight into the data and to provoke new
questions. Users can guide the system to produce more desirable results
by expressing constraints on the data relevant to their analytical tasks.

We also provide a case study that demonstrate the effectiveness of
Clustervision with a team of data scientists, clinicians, and clinical
researchers on a longitudinal database of electronic medical records.
The research team is interested in finding clusters of similar patients to
extract meaningful groups of patients with heart failure. The analysis
described in the case study illustrates how the design of Clustervision
forced scientists to think about their data in new ways and ask new
questions about it.

Concretely, our contributions include:
• A design and implementation of an interactive visual analytics sys-

tem, Clustervision, for exploring relevant unsupervised clustering
results. Our tool includes:

– a clustering back-end that runs a variety of clustering tech-
niques and parameters, and provides rankings of high quality
results from a diverse set of quality metrics.

– a visual user interface that allows users to select recommended
clustering results, explore the clusters using a variety of visual-
ization techniques, and select the cluster result that best suits
their analysis.

• A case study of data scientists using Clustervision to find clusters of
patients with heart failure from electronic health records.

2 RELATED WORK

This section reviews prior studies that propose various clustering tech-
niques and visual interactive clustering methods.

2.1 Clustering Techniques and Approaches
There exist a large variety of algorithms for clustering [46], and many
of these algorithms can be classified into the following five categories:
• Centroid-based methods: e.g., k-means, Fuzzy c-mean [2]. These

algorithms require a priori knowledge of number of clusters, and a
choice of metric.

• Connectivity-based methods: e.g., Hierarchical and Agglomerative
methods [2]. These algorithms use a linkage criterion and distance
metric to split or join clusters.

• Density based methods: e.g., DBSCAN [18], OPTICS [3]. These
algorithms require parameters to quantify the density of the clusters
and how to partition density.

• Low Dimensional Embeddings: e.g., Spectral Clustering [41].
These algorithms require a specific number of low dimensions to be
projected on, and number of clusters.

• Probabilistic clustering methods: e.g., Gaussian Mixture Mod-
els [36], Latent Dirichlet Allocation [9]. These algorithms use prob-

ability distributions to determine which cluster points belong and
which hyperparameters to use.

Each of these classes of algorithms have somewhat different strengths
[32]. For example, centroid-based methods support a representation of
clusters using the cluster means. Density-based methods support the
detection of outliers that are not assigned to any cluster. Connectivity-
based methods provide a hierarchical representation of possible group-
ings which can be inspected with dendrograms. Spectral clustering is
particularly useful when the clusters are not completely described by
their centroids. Probabilistic clustering methods may represent the data
more faithfully by using decisions from the model, but are often less
interpretable to users. Complementary to these approaches, interactive
clustering, where users provide feedback to the algorithm, is also an
active area of research [4, 5, 7].

As there are many clustering algorithms and user constraints, the
optimal choice often depends on the dataset and task. The difficulty in
choosing appropriate values for the parameters also makes it difficult
to optimally utilize a clustering method. In order to assess the quality
of a clustering, many quality metrics have been proposed, including:

• Calinski-Harabaz index: The Calinski-Harabaz index of a clus-
tering is defined as the ratio of the between-cluster variance and
the within-cluster variance [21]. Well-defined clusters have higher
between-cluster variance and lower within-cluster variance.

• Silhouette Coefficient: The Silhouette Coefficient [37] is a measure
of how similar a point is to its own cluster compared to other clusters,
where a high value indicates that the object is well matched to its
own cluster and poorly matched to neighboring clusters.

• Davies-Bouldin index: This metric is similar to the Calinski-
Harabaz index and is defined as the average over all clusters the
ratio of within-cluster dispersion and the pairwise between-cluster
dispersion [16].

• Gap Statistic: The Gap Statistic [44] measures the quality by consid-
ering clusterings of random permutations of the data and comparing
these to a null reference distribution with no clustering structure.

• SDbw: The SDbw Validity Index [20] attempts to measure quality by
taking into consideration cluster compactness, separation, and the
density of the clusters.

The effectiveness of these metrics in gauging the quality of the clus-
tering is also difficult to determine due to the lack of ground truth. To
understand clustering metrics, Liu et al [25] studied 11 quality metrics
and investigated their validation properties in five different aspects:
monotonicity, noise, density, subclusters and skewed distributions.

As there is no systematic approach for finding the best clustering
result, an alternative is to summarize results from multiple clustering
runs. For instance, Gionis et al. [19] proposes clustering aggregation,
which aims to find a clustering that agrees with other clusterings by
running different algorithms and different parameter values. A related
approach in clustering community is called meta clustering, where
many different clusterings of the data is performed and then users can
choose the clusterings based on their requirements. This problem was
formulated by Caruana et al. [14] where they proposed methods to
generate diverse clusterings of the data and then (meta-)cluster this
set of data clusterings. Phillips et al. [34] proposed a framework to
generate diverse, high-quality clusterings by sampling high-quality
clusterings and choosing k representatives. Subspace clustering aims
to find clusters in different subspaces of datasets by integrating feature
relevance evaluation and clustering. There are many algorithms to find
such optimal partitions of data by identifying relevant dimensional
subspaces [33]. Similarly, consensus clustering attempts to provide
consensus between multiple runs of clusterings, which can be outputs
of different parameters or different clustering techniques, to determine
the number and assess the stability of the groupings [31].

While clustering summarization approaches are promising, the re-
sults may be hard to interpret. Clustervision builds on these approaches
by using diverse metrics to measure quality, supporting user interaction,
and making results more interpretable with visualization to help guide
users towards an appropriate clustering result.



2.2 Visualization Systems for Cluster Analysis

There is a rich history of visual analytics systems that employ clustering
as a part of high dimensional data analysis. Hierarchical Clustering
Explorer [39] allows users to investigate an overview of a clustering
result and to inspect and compare details of clusters by using coordi-
nated displays. VISTA [15] enables users to visually view clusters of a
clustering result on a 2D projection, then to re-label data points, and
verify user-adjusted results using internal quality metric scores like
RMSSTD (Root Mean Square Standard Deviation), RS (R-Square) and
SDbw. Dicon [13] visualizes multidimensional clusters’ quality as well
as attribute-based information through icon-based visualization and
embedded statistical information. Unlike Clustervision, these systems
do not support comparison between multiple clustering results.

Some applications allow users to provide feedback on clustering
results so that the next run applies their inputs. desJardins et al. [17]
proposed a technique to iteratively run and visualize clustering with
constraints made by users. User input is made by moving objects
initially displayed using spring-based embedding on a 2D projection.
iVisClustering allows users to adjust cluster hierarchies and to re-label
individual data items (i.e., documents) into another cluster [23]. Cluster
Sculptor also allows users to update cluster labels on a 2D projection
while iterating t-SNE steps [12]. Boudjeloud-Assala et al. propose an
interactive visual clustering system that allows users to define seeds (i.e.,
center) and limits of clusters for steering the clustering process [11].
Clusterix is a system that allows users to add or remove features for
future clustering runs [28]. While these systems help steer the user
toward better clustering results, the user must define how to make
the clustering better rather than receiving recommendations from the
system, unlike Clustervision.

On the other hand, some visual analytics techniques allow users
to generate and compare multiple clustering results with respect to
their quality, as well as attribute-based information. Turkay et al. [45]
propose a visual analytic framework that users can form clustering
by automated algorithms or manual formation and evaluate them vi-
sually by using cluster tendency scores as well as a parallel cluster
view. XCluSim allows users to interactively generate and compare
multiple clustering results with multiple coordinated views [26]. In
these systems, views and computational techniques are combined to
help users interactively reach a stable or satisfying clustering result.
However, no single quality metric can guarantee users’ diverse analysis
goals and requirements. Even with multiple quality metrics, users may
want to explore more diverse sets of clustering results and drill down
into interesting results.

Clustervision differentiates itself from the aforementioned work by
contributing a comprehensive visual analytics system that lets users
rank and compare multiple clustering results based on quality metrics,
provides meaningful feature-based summaries of clusters using visual-
izations and univariate statistics, and allows users to apply their domain
expertise to constrain and steer clustering analysis.

3 DESIGN GOALS

The initial design goals of Clustervision were derived from prior work
and refined with iterative development of prototypes and interviews
with data scientists. In addition, we were inspired by the Visual Pa-
rameter Space Analysis (vPSA) conceptual framework proposed by
Sedlmair et al. [38]. Using the terminology of vPSA, Clustervision’s
data flow utilizes a sampling data flow by systematically sampling
multiple clustering algorithms and parameters to generate a variety of
possible clustering results. Users can browse the clustering results using
a global-to-local navigation strategy by beginning with an overview of
the highest quality results. Clustervision was also designed to support
various analysis tasks, including optimization to find a satisfying clus-
tering result guided by quality metrics, partitioning to show the diverse
clustering results possible due to different parameters, and sensitivity
by allowing users to constrain parameters to find relevant clusterings.
With these tasks in mind, our concrete list of design goals include:
1. Compare clustering results w.r.t. quality, technique, parame-

ter: Clustervision should allow users to compare clustering results

with respect to their quality, clusters, clustering technique, and pa-
rameters. Using Clustervision, users should be able to visually
interpret the results to assess their relevance to reaching insights.

2. Compare clusters within a clustering result w.r.t. features, qual-
ity, point: Clustervision should allow users to pick a clustering
result and to visually explore clusters with respect to their features,
quality, and data points within clusters, to ensure the clusters repre-
sent their data faithfully.

3. Compare a data point to its cluster: Clustervision should allow
users to see details of data points and to assess their similarities and
differences from the cluster with respect to the data attributes.

4. Understand why data points are clustered together or apart:
Clustervision should allow users to help understand what features
of the dataset are responsible for the grouping of the data points.

5. Retrieve new clustering results recommended by Clustervision
based on users’ input: Using Clustervision, users should be able
to steer clustering results towards their analysis goals. For instance,
Clustervision should enable users to find the size and type of clusters
they are seeking, as well as specifying constraints for clustering
while users analyze data.
Clustervision targets multi-dimensional data composed of up to a

hundred semantically meaningful features, as this is a common upper
bound for most visual parameter space analysis tools surveyed [38].
Furthermore, the survey illustrates the novelty of our design, as no other
tools are described as primarily supporting a sampling data flow with
global-to-local navigation, and optimization, partitioning, sensitivity
analysis tasks like Clustervision.

4 SYSTEM

In order to support interactive exploration of clustering results, we
propose Clustervision, a web-based interactive visual analytics system.
Although the tool’s design was motivated by challenges with clinical
data, the tool is also able to cluster multi-dimensional data from any
domain. For example, the tool has also been used to explore clusters
of handwritten digits, university rankings, as well as classic data sets
from the UCI Machine Learning Repository [24].

4.1 Running Example: The Joy of Clustering
We demonstrate the workflow and system features by using a dataset
of all of the 403 paintings produced on the PBS show “The Joy of
Painting”. This television show was hosted by Bob Ross, famous for
painting “happy trees” and “fluffy clouds” and each episode resulted in
the completion of new work of art. Over the course of the 403 episodes
of the show, a variety of diverse landscapes were painted featuring
trees, oceans, mountains or man-made structures. Walt Hickey, the
chief culture writer for the website FiveThirtyEight, recently conducted
a statistical analysis of the work of Bob Ross1 and manually coded each
of the episodes using 67 features (e.g., trees, water, mountains, and
weather elements). Hickey was interested in finding clusters of similar
paintings for his featured article, but chose to use a single clustering
technique (k-means) and a single parameter (k=10). Hickey remarked
that while some of the clusters “were the kinds of clear clusterings we
were hoping to find”, others were “groupings are not supremely helpful
in defining what Ross painted”. We use this dissatisfaction by Hickey
to motivate our discussion of how Clustervision could potentially be
used to arrive at more satisfactory clusterings.

4.2 Workflow
In order to support the workflow of data scientists, the UI of Clustervi-
sion is organized in the following ways. Figure 1(a) shows the Ranked
List of Clustering Results on the left, which lets users compare multiple
clustering results. In the middle, the Projection (Figure 1(b)), Ranked
Features and Parallel Trends (Figure 1(c)) views help users compare
clusters within a clustering result using multiple high-dimensional visu-
alizations. The Cluster Detail (Figure 1(d)) and and Data Point (Figure
1(e)) help users understand and compare data points and their clusters.

1https://fivethirtyeight.com/features/a-statistical-analysis-of-the-work-of-
bob-ross/



Furthermore, Ranked Features and Data Point views also provide de-
tails on why data points are clustered together and apart. Users can
use each of these views to pivot to clustering results more relevant to
them, by supporting searching for clusterings that meet their clustering
constraints.

The following sections shows the design and function of each view.

4.2.1 Ranked List of Clustering Results

Fig. 2. The Ranked List of Clustering Results view features a ranked
list of clustering results. Each row features a clustering summary glyph,
where each colored stripe represents a color whose width is proportional
to the number of data points in that cluster. Each cluster has a unique
color that is consistently used across all views in the UI. On the right
is a radar chart, where each quality metric value is visualized along an
axis and all the five quality metrics are connected to form a polygon.
When Clustering Comparison, multiple polygons are overlaid for visual
comparison.

After a dataset is loaded into the tool, Clustervision computes and
evaluates all possible combinations of clustering techniques and param-
eters. These calculations are offloaded to our cluster analytics server,
which is multi-threaded and can farm out these calculations to multi-
ple cores. Using a default configuration, Clustervision will use three
clustering techniques (k-means, Spectral Clustering, and Agglomera-
tive Clustering) and 19 parameter configurations (k=2-20), resulting
in 58 clustering results. The system can also optionally include more
clustering techniques and parameters, including DBSCAN [18] and
Gaussian Mixture Models, but this optional configuration is not used
for describing the system in this paper.

All of the clustering results are then analyzed using 5 quality metrics:
Calinski-Harabaz, Silhouette, Davies-Bouldin, SDbw, and Gap Statistic.
As each of these quality metrics aim to compute quality using differ-
ent properties of the clusters (e.g., variance, within-cluster distance,
between-cluster distance, density), we chose not to rely on a single
metric but instead a variety of diverse metrics. Furthermore, although
SDbw [25] was shown by Liu et al. to perform best on synthetic data,
there is still open debate on the most effective quality metrics, so our
system favors a consensus approach. By default, the top 3 highest
ranking results from each metric are presented to the user, resulting in
the top 15 results in total for the user to consider. In order to ensure the
results aren’t too similar, an item will only be considered as a top result
if it is at least 5% different from another top result (that is, less than
95% of the data points should belong to different clusters for the result
to be considered distinct).

These results are presented in the Ranked List of Clustering Results
view as a ranked list of clustering results. Figure 2 shows an example
of the top 6 clustering results. Each row is a clustering result, which
has a numeric ranked index (e.g., 1-6), a clustering summary glyph,

and a quality summary radar chart. The clustering summary glyph
looks visually similar to a set of horizontal colored stripes, where each
colored stripe represents a color whose width is proportional to the
number of data points (e.g., paintings) in that cluster. Each cluster
has a unique color that is consistently used across all views in the UI
using a repeating 20-color palette. As the total number of data points
is consistent across all clustering results, users can quickly check and
compare the number of clusters and the distribution of data points
across clusters using the view. To minimize the number of points
that change color when the user switches from one clustering result
to another, color assignment is formulated as a minimum cost perfect
matching problem, using the Hungarian algorithm [22] to keep colors
consistent for similar clusters across clustering results.

On the right, the radar chart consists of a sequence of five spokes,
with each spoke representing one of the quality metrics. The length of
each spoke from the center is proportional to the normalized score of
the quality metric, and a line is drawn to connect the quality metrics as
a polygon. Moving the mouse over a spoke will reveal the name of the
quality metric responsible for the score.

Ranked List of Clustering Results allows users to interactively rede-
fine and request clustering results that they want to view. Users can
move the mouse over each clustering summary glyph, which displays
additional information about the clustering result, including the number
of data points, the clustering algorithm, quality metric scores, and the
quality metric that was responsible for this particular clustering result
to appear in the top results.

User can also adjust a range slider to focus on clustering sizes
relevant to their analysis. For example, if users wished to summarize
Bob Ross’s painting in a small number of groups, they could select
smaller ranges on the slider and focus their attention on high quality
results with less clusters of paintings.

Figure 2 shows the top clustering results for the Bob Ross dataset,
and it illustrates the variety of results. Some clusterings have as few
as two clusters of paintings, like Clustering 1, which has a large blue
cluster and a small green cluster. Other clusterings, like Clustering
6, have six clusters of diverse sizes. None of these highly ranked
clusterings match Hickey’s chosen technique of k-means, with k=10,
suggesting it may be worthwhile to explore other options.

4.2.2 Projection

In order to understand if a particular clustering result is relevant to
the analytical task, users often need to see their data points in context
of the cluster groupings. The Projection view encodes data points as
circular elements in a two dimensional space, resembling a scatterplot,
as shown in Figure 3(a). However, instead of plotting the data on
only two dimensions of the data, Clustervision uses dimensionality
reduction techniques to synthesize all of the dimensions of the data into
two dimensions. Unlike scatterplots, this results in axes that do not
have a clear meaning, so it may provide difficulties for inexperienced
users in interpreting the meaning of data point positions and the axes
of the projection [30]. Nonetheless, this technique was chosen as it
is applicable to any high-dimensional data from any domain, and can
provide a consistent way to represent this data. The main use of the
Projection view is to have a consistent and stable representation across
all clustering results, as the positions of the data points remain stable
across all clustering results. Though the position of the data points
gives clues to the distance and separation between clusters, users can
find more evidence about the underlying properties of the clusters from
the other views.

When users select a clustering result from the Ranked List of Clus-
tering Results view, the data points in the Projection view are colored
to match its cluster. By default, Clustervision projects data using the
t-Distributed Stochastic Neighbor Embedding (t-SNE) technique [27]
which is currently a popular method for exploring high-dimensional
data. However, if users are unhappy with the projection, they can pivot
to other popular techniques including principal component analysis
(PCA), spectral projection, and multidimensional scaling (MDS) by
choosing an alternative type in the title bar.

The Projection view serves as one way to explore both individual



(a) All of the data points are visualized in the Projection view.

(b) Superpoints are enabled to show fewer points per cluster.

(c) Superpoints are fully enabled to only show one point per cluster.

Fig. 3. The Projection view encodes data points as circular elements in
a two dimensional space using dimensionality reduction techniques to
synthesize all of the dimensions of the data into two dimensions. The
Projection view provides consistent and stable representation across all
clustering results. Users can enable superpoints to reduce the visual
clutter with full control over the number of superpoints.

data points and clusters. Most importantly, it allows users to use other
views to get more details about the selected data points and clusters.
Users can move the mouse over an individual data point to see details
on demand in the Data Point view, or select a cluster for analysis in the
Cluster Detail view. User can also view the feature values of the data
points in different clusters in the Parallel Trends view.

Figure 3(a) shows a t-SNE projection of the 403 paintings in the Bob
Ross dataset. The projection view shows an island of green points on
the left, whereas a bigger island of data points on the right is divided
into three clusters (red, blue, and yellow). This suggests that the green
paintings may be very distinct paintings from others in the collection.
In order to investigate this, the paintings and cluster can be selected to
get more information in the Data Point and Cluster Detail views.

As users may feel overwhelmed by having all data points visible,
users can reduce the visual clutter by using the Superpoints option in
the Projection view, which adopts the idea of coresets [1] and Splatter-
plots [29]. In this mode, similar points are represented by a superpoint,
which is a representative of their neighbors. These are visually encoded
to be larger and proportional to the number of neighbors they represent,
whereas the neighboring points that have a represented are removed
from the view. Superpoints are computed using hierarchical clustering
on each cluster, where representatives are found by finding the point
which is closest to all other points in the same cluster. Users can control
the number of superpoints using a slider, as shown in Figure 3.

4.2.3 Feature-based views: Ranked Features and Parallel
Trends

In order to help summarize the clustering results, the Ranked Features
and Parallel Trends views are coordinated with the projection view and
shows information about the features of the selected clustering result.

One of the challenges associated with unsupervised clustering is that
even after clusters are defined by a technique, it is difficult to summarize

why the cluster groupings were made. In an attempt to retrieve the
features responsible for the separation, we utilize univariate statistics to
compute whether there is a statistically significant relationship between
each feature and each cluster. We consider this a classification task,
where each cluster is a class, and compute the analysis of variance
(ANOVA) for the each feature.

The resulting scores, based on the ANOVA F-Value, allow us to rank
each feature in order of importance, as well as retrieve an associated p-
value to ensure the relationship is statistically significant. This approach
is similar to using such univariate statistics for feature selection for
determining the most informative features, but instead of using it to
remove non-informative features from a model, we use the resulting
scores to rank the importance of features. These important features
are displayed as a ranked list in the Ranked Features view, where each
feature name is augmented with a numeric importance score and a
corresponding bar chart, as shown in Figure 4.

While this test is univariate and only considers each feature sepa-
rately, this nonetheless provides clues to users which features may be
most responsible for the separation amongst clusters. An additional
caveat is that features selected by an F-Value only indicates that the
feature is important among some of the clusters, but may not be im-
portant for all clusters. While post-hoc tests could be used to decide
which clusters the feature is responsible for, choosing a proper post-hoc
test depends on the variances of features across clusters. Instead, we
opted to pair these importance scores with the Parallel Trends view to
visualize the trends of each cluster across these important features.

The Parallel Trends is similar to parallel coordinates, but in order to
simplify the complexity of many lines, initially the view only shows the
trends of each cluster. As in parallel coordinates, Parallel Trends has
vertical axes that represents each feature of the data points. However,
instead of drawing a line crossing the axes for each data point as in
parallel coordinates, Parallel Trends draws an area path per cluster. The
intervals cross each axis, where the vertical ends represent standard
deviation or 95% confidence intervals for the corresponding features.
Then, a dotted line is drawn on top of the area path per cluster to show
the mean values for each cluster for the corresponding data feature.
To see details of a cluster, users can click on an area path to show
individual lines that represent corresponding data points within the
cluster as shown in Figure 4. This implementation also allows users to
sort axes, switch axes, and filter on specific feature values on each axis,
which are interaction techniques common to parallel coordinates.

For example, in the selected Bob Ross clustering shown in Figure
4(a), the top features most responsible for the cluster grouping are
the presence of trees, mountains, and oceans in paintings, which is
consistent with the features that Hickey manually used to summarize
his meaningful clusters (e.g., clusters of “ocean scenes”, “trees and at
least one mountain”, and “trees but no mountains”). This ranked list
in conjunction with the Parallel Trends views help show how these
features correlate with the clusters. The Green cluster has uniquely high
values in Ocean, Waves, and Beach, giving a clear indication that this
cluster represents the ocean-oriented paintings of Ross. This cluster is
demonstrably different from the Yellow cluster (which has high values
of tree, mountain, snowy mountains, and trees), the Blue cluster (with
Structures), and the Red cluster (with tree and trees). While only the
top 8 features are shown, other features can be added by selecting them.
For example, after analyzing this cluster in the Data Point view, it
became clear that many of the paintings in the Blue cluster appear to
have cabins and barns. By adding these features to the Parallel Trends
view, it is clear how the red cluster dominates these features (Figure
4(b)). This becomes even more evident when sorting the axes by their
relevance to the cluster (Figure 4(c)).

Like parallel coordinates, Parallel Trends may suffer from scalability
issues if there are many features. For example, if there are many
features and thus many axes, it may be difficult to view the trends due
to limited screen real estate. To resolve this issue, the Parallel Trends
view is coordinated with the Ranked Features table, and only the most
important features are shown initially. Users can add new features as
new axes to the Parallel Trends by selecting the checkbox, as shown in
Figure 4. Users can also remove features by unselecting them.



(a) Parallel Trends initially uses the top 8 most important
features as axes.

(b) Users can add additional axes to explore additional
features.

(c) Users can also re-order axes to make trends of clusters
more clear.

Fig. 4. The Parallel Trends view is similar to parallel coordinates, but
in order to simplify the complexity of many lines, the view focuses on
showing the trends of each cluster. Parallel Trends has vertical axes that
represents each feature of the data points. However, instead of drawing
a line crossing the axes for each data point as in parallel coordinates,
Parallel Trends draws an area path per cluster. The intervals cross
each axis, where the vertical ends represent standard deviation or 95%
confidence intervals for the corresponding features.

4.2.4 Cluster Detail and Data Point

The Cluster Detail view appears when users select a particular cluster
from the Projection or Parallel Trends views. This view is designed to
present a summary of the clusters using statistics and prototypes. For
the selected cluster, the number of data points that are members of the
cluster is shown as a labeled bar that is the same color of the cluster.
This number is put in context with all of the other cluster sizes by
showing translucent bars representing each cluster to form a bar chart.
Similar bar charts are shown for statistics summarizing the cluster, such
as cohesion, separation, and silhouette scores, as shown at the top of
Figure 5. Cohesion measures how closely related are the data points
in a cluster, defined as the intra-cluster sum of squares [2]. Separation
quantifies how distinct a cluster is from other clusters, and is defined
as the inter-cluster sum of squares [2]. Silhouette is the mean of all of
silhouette scores for the cluster (defined above). In addition to these
statistical summaries, the Cluster Detail view also shows members
of the cluster that are typical or atypical for the cluster based on the
distance metric. On the left, the top 5 “inliers” are shown, which are
the five data points closest to the center of the cluster. On the right,
the top 5 “outliers” are shown, which are the data points farthest from
the cluster’s center. The description of inliers and outliers show the
euclidean distance of the corresponding data points from the centroid
of the cluster. By clicking on any of these points, the data point will
highlight in the Projection and Parallel Trends views, and also show

Fig. 5. The Cluster Detail view (top) presents a summary of the clusters
using statistics and prototypes. The Data Point view (bottom) provides
details about the actual values of a data points and provides context by
presenting the distribution of values alongside each value.

more details in the Data Point view.
The Data Point view appears when users select or mouseover a data

point in the Projection or Parallel Trends views. The Data Point pro-
vides details about the actual values of a data points features. However,
this view also puts them in the context of other data points by presenting
the distribution of values alongside each value. The value distributions
are shown using a kernel density plot, which has been shown to be an
effective visual technique for communicating how a cluster relates to
the whole dataset [43]. In order to demonstrate continuous values, not
present in the Bob Ross dataset, Figure 6 shows a data point selected
from a red cluster in a medical dataset described in Section 5. Each
density plot shows the data point’s cluster distribution (area in red) as
well as the distribution of all datapoints (area in gray). Vertical marks
represent the mean values of the chosen cluster (striped vertical mark in
red) and the currently selected data point (black) for continuous feature
values. For binary variables and categorical feature values with less
than five levels, such as the data in the Bob Ross dataset, a histogram is
shown rather than density plot, with triangle marks to show the selected
data point as seen in Figure 5. User can quickly observe the attribute
values of each cluster compared with the attribute values of all.

Users can sort features by their name, value, cluster average value,
and importance. The importance calculation is similar to the technique
described above in the Ranked Features view. However, here the
technique considers assigning the selected cluster as one class, and



Fig. 6. Kernel density plots are used in the Data Point view when features
have continuous values. This view illustrates data from the Sutter Health
case study, described later in Section 5.

all other clusters as a second class. By computing an ANOVA using
these cluster-centric classes, it is possible to determine which features
are responsible for why the selected cluster is different from all other
clusters. This option presents the most important features at the top of
this view, making it easy to compare between data points and clusters
by mouse-overing regions of the interest in the Projection view.

In Figure 5, the yellow cluster is selected. While having less data
points than the green and red clusters, it nonetheless features the highest
cohesion and separation scores. The top “inlier” was selected in Figure
5, which shows that this representative painting has tree, mountain,
trees, conifer, and snowy mountains. Sorting by feature score (Figure
7), this panel illustrates how this clustering is also defined by the
absence of oceans, waves, beach and palm tree elements.

4.2.5 Clustering Constraints
Users can also interactively request new results by setting up constraints
with respect to specific data points. Constrained clustering is to filter
the nearest clustering result that satisfies users’ constraints (e.g., ‘must-
link’ for a set of data points to be grouped together within a cluster
and ‘cannot-link’ for a set to be in separate clusters) [6]. Users can
select multiple data points and tell the system that they need to be either
in the same cluster or in separate clusters. Then, the system filters
clustering results based on the requirements set by the user. The user
can create constraints by right-clicking on data points to prompt a menu
and by choosing them to be either same or separate clusters in the new
clustering results.

For example, after a deeper exploration the Bob Ross dataset, the
Parallel Trends view made it clear there were paintings with lakes in the
blue, yellow, and red clusters. If one wanted to see if a clustering result
exists where these lake paintings might make up their own cluster,
users could select a lake painting from each cluster and declare a
constraint where they need to be a part of the same cluster. Clustervision
would then search all clustering results and update the Ranked List of
Clustering Results with results that match the constraint.

4.2.6 Comparing Clustering Results
After examining multiple clustering results, users may wish to compare
them to understand them better. Clustervision supports Clustering
Comparison by allowing users to select multiple clustering results
in the Ranked List of Clustering Results view for comparison. The
Projection view shows an overview of differences between clustering
results. Instead of each data point having a single color according to its
cluster, data points in the Clustering Comparison view are represented
as a circle divided into multiple slices, with each slice colored by each
result selected.

For instance, Figure 8(b) and 8(c) show two clustering results. As
shown in Figure 8(d), Clustering Comparison highlights data items
that were clustered with blue in Figure 8(b) but clustered with red and

Fig. 7. This figure illustrates the same Data Point view as Figure 5, but
instead sorted by feature importance score, abbreviated as F, to reveal
features that are both common and missing from this cluster.

yellow in Figure 8(c). The projection view highlights such items by
dividing a circle into two halves, the left half and the right half: the left
half showing the cluster color for a clustering result and the right half
showing the cluster color for the other clustering result. When multiple
clustering results are selected for comparison, the selected clustering
(highlighted in yellow) has its quality metric scores provided for context
in each of the radar charts, as shown in 8(a). In this example, Clustering
4 has a stronger SDbw (upper left spoke) score, whereas Clustering 1
has a stronger Davies-Bouldin index (bottom right spoke).

(a) Four Clustering Results

(b) Clustering Result #1 (c) Clustering Result #4

(d) The Difference between Clustering Results #1 and #4

Fig. 8. Clustering Comparison shows the difference (d) between two
clusterings (b) and (c) in circles with slices of different colors. When mul-
tiple clustering results are selected, the selected clustering (highlighted
in yellow) has its quality metric scores provided for context in the radar
charts, as shown in (a).



Fig. 9. As a part of a case study, clinical researchers were able to use Clustervision to identify meaningful clusters of patients with heart disease.

5 CASE STUDY: FINDING CLUSTERS OF SIMILAR PATIENTS

There is a growing belief in the visualization community that traditional
evaluation metrics (e.g., measuring task time completion or number of
errors) are often insufficient to evaluate visualization systems [8,35,42].
Instead, we demonstrate the effectiveness of Clustervision using a case
study as a team of five data scientists and two clinicians interested in
using unsupervised clustering techniques on a longitudinal database of
electronic medical records. The research team is interested in finding
clusters of similar patients to extract meaningful groups of patients with
heart failure using a database of approximately 1,500 patients from
Sutter Health, a healthcare provider in Northern California.

There are many diseases in which patients may be diagnosed as
having the same disease, but will respond to treatments differently. For
example, heart failure is often described as a heterogeneous disease,
which makes it difficult to find treatments to improve outcomes con-
sistently among patients [10]. Researchers believe that if they could
classify patients into groups of similar individuals, they could impact
these distinct groups with more predictable, group-specific treatments.

A recent study by Shah et al. managed to use unsupervised clus-
tering techniques to classify patients with HFpEF (a cardiovascular
syndrome known as heart failure with preserved ejection fraction) [40].
The researchers imported clinical variables, physical characteristics,
laboratory data, and echocardiographic parameters of 397 patients into
a hierarchical clustering package in R and tried using varying param-
eters of k (which defines the number of clusters in the output, which
many clustering algorithms require as input). After trying all values of
k between 1 and 8, they measured their clusters using a quality metric,
Bayesian information criterion, and determined the clustering that re-
sulted in 3 groups received the highest score. We refer to this grouping
as the Northwestern clustering result. After examining these groups
more closely, they believe that these 3 groups represent 3 archetypes of
HFpEF, respectively, which are: (1) a group of younger patients with a
lower number of comorbidities, (2) obese patients with diabetes and
hypertension, and (3) older patients with atrial fibrillation and chronic
kidney disease. This work claims to be the first study that applies un-
supervised clustering to resolve heterogeneity among HFpEF patients
using observational data.

However, these researchers opted to use a single clustering algo-
rithm with only 8 different parameter configurations and 1 quality

metric. While the results the researchers derived appear to be clinically
meaningful, there is an open question if any additional insights could
have been reached had any other clustering techniques or parameter
configurations been explored.

5.1 Goal: Analysis Beyond the Northwestern Results
While this motivating study [40] used data from patients collected after
they were diagnosed with HFpEF, our case study team was interested in
going beyond this to determine if data from patients before their diag-
nosis of HFpEF could be used to cluster patients. Furthermore, rather
than running a prospective observational study, they were hoping to
utilize retrospective data already collected in electronic health records.
Identifying meaningful groups of patients with data proceeding the
diagnose could make it possible for patients to start early treatments
to hopefully prevent the disease from occurring in the first place. The
research team utilized a database of patients diagnosed with HFpEF,
but only extracted records that occurred during the two years prior
to diagnosis. While certain features, such as physical characteristics,
laboratory data, and echocardiographic parameters, were not available
in the electronic health records, the researchers managed to extract the
co-morbidities and medications that were used in the Northwestern
clustering to describe the differences between their cohorts. This data
was assembled into a table where each row is a patient and each column
is a comorbidity or medication. Each cell in the table is a count of the
number of times the patient was diagnosed with the comorbidity or
medication in the two years leading up to their diagnosis. In total, there
were 1474 patients, each with 23 features.

5.2 Gaining an Overview of Diverse Clustering Results
As an initial baseline, the researchers were interested in using unsuper-
vised clustering techniques on this table and determine if any results
mimicked the clusters of Northwestern. Since the researchers were
using pre-diagnosis data that consist of different types of features, it
was unclear if any similar patterns would emerge. Figure 9 shows a
screenshot of the interface with the data loaded. On the left side, there
are a variety of clustering results that emerge with high rankings based
on the quality metrics. Some have as few as 2 clusters, and other as
many as 20. The lack of agreement about the number of clusters, even
among high quality results, initially surprised the researchers. However,



the researchers remarked the visualization made it clear that their selec-
tion of a clustering algorithm and parameter would have an important
impact on their analysis.

The researchers initially focused on the results with fewer clusters,
as the Northwestern analysis resulted in only 3 groups of patients.
However, these clusterings (Results 3 and 5 in Figure 9) were not of
equal sizes like the Northwestern clustering. Both of these results had
one small cluster, alongside two bigger clusters. Furthermore, when the
users selected the results, the important features that appeared in the
Ranked Features view, calculated using feature selection techniques, did
not map to the discriminating features mentioned in the Northwestern
study. The researchers remarked that had they only tried looking at
results with 3 clusters, they would have been unsatisfied with the results
and may have concluded that it was not possible to replicate the results
using pre-diagnosis data.

Thankfully, the overview of Clustervision made it clear there were
other high quality results with more clusters. This led them to wonder
that perhaps there would be additional clusters of patients not present in
the Northwestern study. The researchers quickly scanned the ranked list
of results and found other results with a larger number of clusters but
also contain roughly three clusters of similar size (which mimic the clus-
ter sizes of the Northwestern study). Clustering result 7 (highlighted) fit
this description with 5 total clusters, but the 3 smaller clusters appeared
to be of roughly the same size based on the width of their vertical
stripes.

5.3 Finding New Clusters
After selecting the result, the Ranked Features view showed the top
features responsible for these diverging clusters involved Age, Atrial
Fibrillation, Diabetes, Chronic Kidney Disease, and Hypertension. Re-
markably, these comorbidities overlapped with many of the comorbidi-
ties used by the authors in the Northwestern clustering to distinguish
the patient groups. The researchers felt like they were back on track
and gained confidence that unsupervised clustering might still be an
effective technique.

After examining Parallel Trends in Figure 9 (middle bottom), the
blue cluster (N=89) appears to feature the oldest population and have a
high count of Atrial Fibrillation diagnoses, which resembles Northwest-
ern Group 3. The green cluster (N=82) appears to have the youngest
population and also the least amount of diagnoses as its trend interval
hovers close to zero for all of the top dimensions, which resembles
Northwestern Group 1. The purple cluster (N=178) involves a pop-
ulation aged between these two groups, and has high prominence of
Diabetes, Hypertension, Obesity, which resembles Northwestern Group
2. The only key difference between these two groupings is that in
the Northwestern clustering, Group 3 had the highest prominence of
Chronic Kidney Disease, whereas this occurs in the purple group in our
analysis. Nonetheless, this exploration that led to groupings consistent
with Northwestern clustering results was a promising finding.

While the smaller clusters map well to the existing Northwestern
clusters, an open question remains about the two larger clusters. The
younger red cluster (N=427, average age 65) and the older yellow
cluster (N=752, average age 80) have trend lines that hover close
to 0 for most medications and co-morbidities. Is it because these
patients have little data because the cluster is only using examining pre-
diagnosis data? Or is it because these clusters themselves feature many
heterogeneous groupings that need to be examined in more detail?

5.4 Comparing Clustering Results
Motivated by the latter question, the researchers decided to explore a
clustering result that breaks down the red cluster into multiple group-
ings. The researchers enabled the Clustering Comparison view to
compare the above result with Clustering Result 15 which had 20 total
clusters. After also enabling Superpoints, this view made it clear that
the red cluster split into four smaller clusters that appear to be distin-
guishable based on treatments. These four small clusters are selected in
Figure 10 with a black outline. Clicking on each superpoint allowed the
researchers to see the summaries of each clustering. This result features
a gold cluster (N=153) with higher counts of Statins, Ace Inhibitors,

(a) Clustering Results (b) Superpoints comparing Clusterings 7 and 15

Fig. 10. Researchers used Clustering Comparison and Superpoints to
break down the large red cluster into meaningful subgroups.

Beta Blockers, and Calcium-Channel Blockers, a brown cluster (N=38)
with higher counts of ACE Inhibitors and Statins only, a green cluster
(N=156) with higher counts of Thiazides and Thiazide-like Diuretics,
and a teal cluster (N=64) with higher counts of Calcium Channel Block-
ers and Loop Diuretics. This exploration led to the insight that these
subgroups of patients may have been treated differently before their
diagnosis and likely represent different patient phenotypes.

The researchers concluded that the interactive features of Cluster-
vision empowered them to do analyses they might otherwise not have
considered. By having access to an overview of high quality clus-
tering results, they considered additional clustering algorithms they
were previously unfamiliar with, as well as additional parameters. The
researchers remarked that since Clustervision automatically ranked
clusterings with different parameters, they were unconstrained to the
parameters used by the Northwestern study, and likely made novel dis-
coveries about their dataset that might not have been unearthed using
their traditional analysis techniques. The researchers are excited about
these discoveries and hope to validate these findings in an upcoming
clinical publication.

6 CONCLUSION AND DISCUSSION

In this paper, we demonstrated how the design and implementation
of an interactive visual analytics system, Clustervision, can help data
scientists find good and meaningful clusterings of their data. Clustervi-
sion accomplishes this by integrating clustering techniques and quality
metrics with coordinated visualizations that allow users to interactively
explore and analyze clustering results at various levels. Finally, we
presented a case study, which involved a team of data scientists using
Clustervision to find meaningful clusters of patients with a subtype
of heart failure. Their use of the tool led to improved groupings of
patients, which they plan to publish in an upcoming medical journal.

Our work opens up many interesting paths towards users’ full com-
prehension of clustering. However, there are still many challenges
to further support the needs of users. Users could benefit from more
concretely having access to stability metrics that measure how often
a set of data points are grouped together across multiple clustering
results. Stability can be a clue to users of how accurate a grouping may
be. Furthermore, it might be possible to give users more control over
interactively defining and validating distance functions so that users
can steer clustering results with respect to different feature subspaces
of relevance. Finally, the team of data scientists would like to extend
the work for interactive segmentation of not just static features but also
temporal data, which is often a challenging problem in healthcare. As
these future directions illustrate, there is great promise for the use of
advanced clustering tools in many domains. We believe Clustervision
is a first step in that direction to supporting exploration of high quality
and diverse clustering results to help users find clustering results they
may have otherwise missed.
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