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A Critical Analysis of the Usage of
Dimensionality Reduction in Four Domains

Dylan Cashman, Mark Keller, Hyeon Jeon, Bum Chul Kwon, Qianwen Wang

Abstract—Dimensionality reduction is used as an important tool for unraveling the complexities of high-dimensional datasets in many
fields of science, such as cell biology, chemical informatics, and physics. Visualizations of the dimensionally-reduced data enable
scientists to delve into the intrinsic structures of their datasets and align them with established hypotheses. Visualization researchers
have thus proposed many dimensionality reduction methods and interactive systems designed to uncover latent structures. At the same
time, different scientific domains have formulated guidelines or common workflows for using dimensionality reduction techniques and
visualizations for their respective fields. In this work, we present a critical analysis of the usage of dimensionality reduction in scientific
domains outside of computer science. First, we conduct a bibliometric analysis of 21,249 academic publications that use dimensionality
reduction to observe differences in the frequency of techniques across fields. Next, we conduct a survey of a 71-paper sample from four
fields: biology, chemistry, physics, and business. Through this survey, we uncover common workflows, processes, and usage patterns,
including the mixed use of confirmatory data analysis to validate a dataset and projection method and exploratory data analysis to then
generate more hypotheses. We also find that misinterpretations and inappropriate usage is common, particularly in the visual
interpretation of the resulting dimensionally reduced view. Lastly, we compare our observations with recent works in the visualization
community in order to match work within our community to potential areas of impact outside our community. By comparing the usage
found within scientific fields to the recent research output of the visualization community, we offer both validation of the progress of
visualization research into dimensionality reduction and a call for action to produce techniques that meet the needs of scientific users.

Index Terms—Dimensionality Reduction, Projection, Visualization, Critical Analysis
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1 INTRODUCTION

Recent years have witnessed the ubiquitous application of
dimensionality reduction (DR) techniques across various
domains. By converting hundreds or thousands of dimen-
sions into just two, DR enables intuitive visualization of
high-dimensional data, which greatly aids exploratory data
analysis (EDA), especially in noise filtering and pattern
identification. Consequently, DR has evolved into an essen-
tial component of many data analysis workflows [1], [2].
One of the most popular DR methods, t-SNE [3], has been
cited more than 45,000 times as of June 2024, according
to Google Scholar. In addition, DR is a core component in
many visual analytics systems [4]–[6].

At the same time, concerns regarding the use and inter-
pretation of these techniques have emerged [7]–[10]. First,
distortion and information loss are inevitably induced when
applying DR can easily lead to inaccurate interpretation
of the high-dimensional data [2], [8], [11]. Second, inex-
perienced users often interpret projections in a manner
that violates their original design intention. For example,
one common mistake is the assumption that the distance
between two clusters in the projected 2D manifold directly
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reflects the similarity between them [12], [13]. There is
ongoing debate regarding the usage and interpretation of
dimensionality reduction in data analysis.

It is important for visualization researchers to consider
if the visualization of DR results is meeting the needs of the
scientific community at large. While there are tools and pre-
processing pipelines recommended within domains, they
may be designed explicitly for particular types and scales of
data typical in those domains and thus not be more broadly
applicable. Despite the ubiquitous use of DR, there does not
appear to be a standard workflow for interpretation and
use across domains. Different users and fields approach the
analysis in unique ways. There may be a gap in the needs of
the scientific community and the current capabilities of DR
algorithms and visualization systems that integrate them.

To address these challenges, we present a critical analysis
of the usage of DR for high dimensional data analysis outside
of computer science. We seek to answer the following research
questions.

RQ1 What are the usage patterns of DR outside of
computer science? These usage patterns may dif-
fer by what particular techniques they are using (t-
distributed Stochastic Neighbor Embedding i.e. t-
SNE, Principal Component Analysis i.e. PCA, or
Uniform Manifold Approximation and Projection i.e.
UMAP) or by what characterizes the data that is
used. Answering this question informs the algorith-
mic design of visualization systems that allow for the
exploration of high-dimensional data.

RQ2 How are views of dimensionally-reduced data in-
terpreted? The methods of interpretation may also
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depend on the analytic goals and what tasks are used
to reach those analytic goals.

RQ3 Do the usage patterns and interpretation methods
differ by field? The variance in usage and inter-
pretation across domains can provide insight into
the generalizability and extensibility required by DR
algorithms and tools.

RQ4 Are there any gaps in the available DR algorithms
or tools that are opportunities for visualization
researchers to adapt existing tools or to develop
new tools? There may be low-hanging fruit to apply
the learnings from design studies in visualization
research to meet unmet needs within domain use
cases that haven’t been addressed adequately by our
community.

To answer these research questions, we follow a three-
step analysis of scientific literature. First, we conduct a
bibliometric analysis of 21,249 academic publications within
scientific domains that use DR (Section 3). The analysis de-
termined broad trends and practices ( RQ1 ) and how those
practices differ between communities at a high level ( RQ3
). Next, we present a survey of 71 papers from four scientific
fields ( Biology , Chemistry , Physics , and Business ) to
uncover lower-level differences between usage patterns (
RQ1 ) and the interpretations of dimensionally-reduced

views of data offered within scientific publications ( RQ2 )
(Section 4). Full results of our survey are presented in a table
in the appendix as well as an online browser of screenshots
and metadata available at https://dimension-reduction-vis.
github.io/.

We summarize the results from these two steps of the
investigation in a comparative analysis of the findings from
all fields in Section 5. As part of our analysis of these results,
we review concurrent literature within the visualization
community, including STARs, surveys, and reviews. These
works typically review the usage of DR within visualization
systems, and we conclude that there is a mismatch between
the tasks identified in visualization systems vs. those found
in our sample of domain science papers. Through this
comparison, we uncover gaps between the visualization
needs in domain scientists and the solutions offered by
visualization researchers. We describe how these gaps lead
to opportunities for visualization researchers ( RQ4 ).

We find that simple linear projections like PCA are
much more frequently used than nonlinear techniques like
t-SNE and UMAP, even though nonlinear techniques are
more frequently found in visual analytics systems [14]. We
also find that dimensionality reduction visualizations are
frequently used for both confirmatory and exploratory data
analysis, in ways that may lead to bias or spurious inter-
pretations. We describe three common workflows across
the spectrum of confirmatory to exploratory data analysis.
We outline the different ways that the visualization of the
dimensionally reduced data is interpreted across four fields.
In section 6, we provide takeaways to domain scientists and
visualization researchers, including open questions for how
visualization researchers can provide simpler-to-use projec-
tion techniques that provide insights on the underlying data
while mitigating bias.

2 RELATED WORK

In this section, we review related surveys, state-of-the-art
reports, and other publications that investigate the usage
of DR within visualization, our four selected subject areas
(biology, chemistry, physics, and business), and science at
large. Our goal in this section is to situate our work against
existing studies so that a reader might know first what novel
findings are presented in this work, and second where to
look for alternative viewpoints on the topic.

We emphasize that our survey is the first survey from
a visualization researcher’s viewpoint looking outwardly
at the usage of DR in domain sciences. Our survey thus
differentiates from existing surveys that look inwardly at
the usage of DR within visualization research [1], [2] and
surveys of domain scientists looking inwardly at the usage
of DR within their own domains [15]–[18]. Here, we review
both to contrast their methods from this critical analysis.

2.1 Surveys on DR from Visualization Researchers
Visualizing and interacting with DR methods have become
important topics in the visualization community, sparking
visualization researchers to conduct various surveys. We
categorize previous literature into the target of their anal-
ysis.
Survey on DR Techniques The most common type of
DR-related surveys is, not surprisingly, the ones about DR
techniques. These surveys aim to clarify the advantages
and disadvantages of DR techniques, thereby supporting
practitioners in selecting proper DR techniques in their
analysis [2], [14], [19], [20]. For example, Espadoto et al. [14]
surveyed 44 DR techniques and quantitatively examined
their performance using five quality metrics. Nonato and
Aupetit [2] also compared 28 different techniques, providing
guidelines to select DR techniques by the analytic task.
Etemadpour et al. [20], Xia et al. [21], and Sedlmair et al.
[22] also provide similar guidelines, where empirical user
studies ground their guides.
Survey on Tasks This family of surveys taxonomizes DR-
related analytic tasks. They thereby aim to gain a further
understanding of how practitioners use and interact with
DR projections. For example, Sacha et al. surveyed visu-
alization papers that included interaction techniques with
dimensionality reduction algorithms, revealing the proce-
dure in which analysts interact with DR [1]. Nonato and
Aupetit [2] systematically survey and taxonomize the type
of analytic tasks. It is not a literature survey, but Brehmer
et al. [23] also revealed task sequence using DR projections
for HD data analysis by conducting interview studies with
analysts.
Survey on DR Quality metrics Quality metrics for DR
assess the extent to which DR projections suffer from dis-
tortions [24]. As different quality metrics focus on different
structural characteristics (e.g., local neighborhood structure
[25] or cluster structure [11]), selecting appropriate DR
quality metrics that match target analytic tasks is important
for reliable data analysis. Surveys regarding quality metrics,
therefore, aim to guide analysts in choosing appropriate
metrics. Thurn et al. [26] and Bertini et al. [27], for example,
organize DR quality metrics regarding which structural
characteristics they focus on. Lee and Verleysen [28] share a
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similar goal but concentrate on neighborhood preservation-
based methods.

Our work differs from these works by focusing on the
usage patterns and interpretations of DR methods across
diverse fields of science, rather than limiting our scope
to the visualization community. While previous surveys
potentially oversample from design studies driven by visu-
alization researchers or collaborations including them, we
aim to investigate whether the usage patterns ( RQ1 ) and
interpretations ( RQ2 ) of DR in the wild differ from those
familiar to visualization experts. Unlike prior analyses that
compare and contrast various visualization works within
the same field, we compare and contrast the application
of DR methods across diverse scientific disciplines ( RQ3
). By conducting extrinsic observations, our study provides
insights that have the potential to guide the development
of more generally applicable tools ( RQ4 ), especially for
managing biases and distortions inherent in DR techniques.

2.2 Surveys from Subject Area Researchers
Within individual subject areas, surveys, meta-analyses, or
guidelines, papers act as an implicit or explicit reference
on how to use various types of algorithms as part of the
analysis of that subject area’s data. Within biology, there
exist several works comparing the usage of different dimen-
sionality reduction algorithms on various types of biological
data [15]–[17], [29], [30]. Similar works can be found in
physics and astronomy [31], epidemiology [32], and chem-
istry [18]. These works provide some review of practices
within the silo of a single field, and present some recom-
mendations on the usage of DR within a particular high-
dimensional data analysis pipeline. In contrast, our work
looks both within and across domains. We also present our
findings from a computer science perspective, interrogating
the gap between the usage of dimensionality reduction in
visualization research and those being used out in the wild.

3 BIBLIOMETRIC ANALYSIS ACROSS SUBJECT
AREAS

In this section, we use a bibliometric analysis of all recent
papers citing the publications that introduce DR methods.

3.1 Bibliometric Analysis Objectives and Design
This analysis aims to identify broad trends and practices
across domains outside of computer science ( RQ1 ) and
how those practices differ between communities at a high
level ( RQ3 ).

First, we identify 78 publications initially introducing DR
methods (”DR papers”), based on Table 1 of a recent survey
of DR methods by Espadoto et al. [14]. We exclude from our
analysis general machine learning methods such as “neural
networks” which were considered in the original table from
Espadoto et al. [14] but are used more generally for other
methods than DR. We also exclude methods for which
a single originating publication to reference could not be
identified. We acknowledge that this may bias our analysis,
but we believe that the 78 papers provide a broad enough
sample to provide insights. Using the Semantic Scholar
Academic Graph [33], we query for all academic papers

0

2000

4000

6000

8000

Bio
log
y

En
vir

onmen
tal S

cie
nce

Med
ici

ne

Psy
ch

ology

Ph
ys
ics

Bu
sin
es
s

Ec
onomics

Ch
em
ist
ry

Mater
ials 

Sc
ien

ce

Agric
ult

ur
al a

nd Fo
od Sc

ien
ce

s

Ed
uc

atio
n

Geo
logy Art

Lin
guis

tic
s

So
cio

logy

Geo
gra

phy

Politi
ca

l S
cie

nce

Hist
ory

Phil
oso

phy La
w

N
um

be
r o

f c
ita

tio
ns

0

2000

4000

6000

T-
SN
E
PC
A
UM
APNM

F
LD
A

N-
MD
S FA ISO

Ot
he
rs

(a) Citation # of DR techniques
over subject domains

(b) Citation # of 
each technique

Fig. 1. Results of our bibliometric analysis on citation counts. (a) The
number of citations of DR techniques over each subject domain. (b) The
number of citations in which each DR technique was obtained.

(excluding preprints) published since 2013 that cite those
publications. We use the Semantic Scholar classification of
subject area, which is calculated using a machine learning
method (see Appendix for more details). We exclude citing
papers in Computer Science, Mathematics, and Engineering
from our analysis based on the subject areas on record in
Semantic Scholar, as we are interested in understanding how
DR methods are used in other subject areas.

We present results in the form of counts and proportions.
However, proportions are influenced by the introduction
of new DR methods: the proportion of t-SNE usage might
drop as a result of UMAP being introduced and used in
addition to t-SNE). This could result in an observed decrease
in the proportional usage of t-SNE, even if its use consis-
tently increased over the period of analysis. As a result, we
additionally compute percentile rankings of papers using
the CP-EX method described by Bornmann and Williams
[34], using the entire Semantic Scholar corpus to build
cumulative percentages of papers with each citation count
value in each subject area and year.

Acknowledging that citation counts are influenced by
field size, we also consider metrics that are standardized
to enable comparison across subject areas. In addition, we
stratify citation counts by cited method and subject area and
convert them to rankings.

3.2 Bibliometric Analysis Results and Discussion
We first sought to quantify the usage of the 78 DR methods
within each subject area based on direct citations. We find
that there are 136,956 unique papers published between
2013 and 2023 that cite at least one of the DR papers in the
dataset. Of those 136,956 papers, 74,720 have been mapped
to at least one subject area via one of the two subject area
mapping methods. 74,357 papers (99.5% of those with at
least one subject area) have been mapped to at most three
subject areas using either method. Using the latter subject
area assignments, there are 21,249 citing papers assigned to
at least one of 20 subject areas other than Computer Science,
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Fig. 2. Results of our bibliometric analysis. The Y axis encodes the
fraction of the number of papers in each subject area that cite a DR
paper over the total number of published papers in the subject area.

Mathematics, and Engineering. We use these 21,249 papers
and subject areas for the results that follow in this section.
We will highlight the four scientific domains that we focus
on in our subsequent literature review to call attention to
the variance in the domains that we have chosen.

Through summation of citing paper counts within
subject areas, we observe that the top ten areas citing
the 78 DR papers are Biology (first), Environmental
Science, Medicine, Psychology, Physics , Business , Eco-
nomics, Chemistry , Materials Science, and Agricultural
and Food Sciences (tenth) (Figure 1a). Instead of summing
across subject areas, we find that t-SNE, PCA, and UMAP
are the three most highly cited methods (Figure 1b).

Considering the number of citing papers as a proportion
of all papers in each subject area, we instead see that
the top ten areas are Environmental Science (one in 596
papers cites a DR method), Biology , Psychology, Geogra-
phy, Linguistics, Geology, Physics , Business , Economics,
and Chemistry (one in 2,722 papers cites a DR method)
(Figure 2). When we stratify citation counts by cited method
and subject area and convert them to rankings, it becomes
apparent that while t-SNE and PCA appear in the top three
methods for 18 and 16 of the 20 subject areas, respectively,
UMAP is only within the top three methods for Biology
and Medicine (Figure 3). Other notable findings are that N-
MDS is the top-ranked method in Environmental Science
and Geography, FA is the top-ranked method in Psychol-
ogy and Education, and LDA is the top-ranked method in
Agricultural and Food Sciences (Figure 3).

For ease of interpretation and visualization, we next
consolidate lesser-cited DR methods by mapping those that
do not appear in the top three methods cited within any
subject area to the category ‘Other’. This results in nine
DR method categories: t-SNE, PCA, UMAP, Nonnegative
Matrix Factorization (NMF), Linear Discriminant Analysis
(LDA), Non-metric Multidimensional Scaling (N-MDS), Fac-
tor Analysis (FA), Locally Linear Embedding (LLE), and
‘Other’. Using these nine top-used DR method categories,
we next considered the percent usage of each DR method
within each subject area. We find that the percentage of
citations mapped to the ‘Other’ method category is largest
(compared to the eight remaining categories) in the sub-

ject areas Environmental Science, Physics , Business , Eco-
nomics, Chemistry , Materials Science, Education, Geology,
History, and Philosophy, which suggests that there is not a
single overwhelmingly dominant DR method used in these
fields. Together, the top three DR methods per field are cited
more than the bottom 75 methods in Biology , Medicine,
Psychology, Agricultural and Food Sciences, Linguistics,
Sociology, Geography, and Law. This may suggest that in
these subject areas, only a small set of DR methods are
established or accepted or that data characteristics in such
areas are amenable to certain DR methods.

We next consider how the 78 DR methods have been
cited over time. We use percentile rankings of citation
counts stratified by subject area and year to enable tem-
poral comparison. Focusing on t-SNE, PCA, and UMAP
in Biology , Physics , Business , and Chemistry , we find
that percentile rankings for t-SNE, PCA, and UMAP in-
creased between 2013 and 2022 in Biology , Physics , and
Chemistry . In Business , percentile rankings for t-SNE and

UMAP increased while those for PCA stayed consistent
(Figure 4). These results are consistent with the publication
of t-SNE in 2008 and UMAP being preprinted in 2018. The
general trend between 2013 and 2022 across subject areas is
that percentile rankings of DR methods have increased over
time.

In summary, we find that while the use of dimensionality
reduction is prevalent and generally rising across most fields
( RQ1 ), the techniques used vary greatly by field ( RQ3 ). In
fields relating to biology and medicine, t-SNE and UMAP
are popular techniques, while in fields relating to physics,
chemistry, or business, PCA is popular. While there are other
techniques used, t-SNE, PCA, and UMAP are the three most
cited methods in recent years.

4 SUBJECT AREA SURVEY

The bibliometric analysis provided some insights into the
broad trends and practices across domains outside of com-
puter science ( RQ1 ) but did not provide insight into the
types of data used or nuances about the usage of particular
techniques. Likewise, such a high-level analysis could not
analyze the visual interpretations offered ( RQ2 ). As a
subsequent study, we conduct a close reading of a survey
of literature in research outside of computer science.

4.1 Grounded Analysis

We began with a grounded analysis [35], [36] to consider a
theory for analyzing and comparing works based on their
DR. Our goal with this initial investigation was to ground
the analysis of our subsequent literature review, bootstrap-
ping the dimensions on which the usage and interpretation
of dimensionality reduction techniques were spread among
different scientific disciplines.

For this grounded analysis, we loosely gathered papers
from varied domains using Google Scholar and Scopus.
In both search engines, we searched for articles listing
the different dimensionality reduction techniques in their
title, abstract, or keywords and with subject areas of Arts
and Humanities, Economics, Econometrics and Finance,
Nursing, Physics and Astronomy to get a varied collection
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of papers. Between these two searches, we found articles
in single-cell genomics [15]–[17], [29], [30], [37]–[39], busi-
ness/finance [40], [41], urban studies [42], physics [31], [43],
and epidemiology [32].

In our reading of these papers, we found that the us-
age of dimensionality reduction techniques varied in the
analytical goal, the techniques used, the preprocessing and
parameterization of those techniques, and the interpretation
of the results of those techniques. We also found some sim-
ilarities and differences between the scientific subject areas.
For example, many single-cell genomics papers used a 2-D
scatter plot of dimensionally reduced data as one step in a
larger analytics pipeline, only gathering hypotheses to later
test, while other domains drew conclusions directly from
the reduced space. Similarly, the types of data, including
the number of rows and columns, seemed to naturally lead
to different types of interpretations. The design decisions
of the visualizations used also seemed to vary, as some
papers would rely on many annotations and highlights
to explain how the dimensionally reduced data should be
interpreted, while others provided only a few sentences in
the main text. In particular, we found that the usage of
DR differed primarily in the data shape and DR algorithm
being used on that data, the design of the visualization of
the dimensionally-reduced data, the low-level tasks used

in the interpretation of that visualization, and the larger
workflows that the DR was a part of. These papers led to
our classification, as seen in Table ?? in the supplemental
material.

4.2 Selection of papers
Drawing from our bibliometric analysis, we first decide on
four subject areas to focus on based on their diversity in DR
usage: Biology , Chemistry , Physics , and Business . In
particular, we found that Biology was the field that cited
the top three methods the most and featured a large body of
research, while Chemistry , Physics , and Business were
fields that featured usage of alternative DR algorithms.
In addition, several of the coauthors of this work had
experience working with domain scientists in these four
fields. While there were other fields that were more popular
or featured unique usage, such as Environmental Science,
they were either very similar to the chosen fields or they
were outside of the area of expertise of the co-authors.
We note that this selection of four domains does limit the
generalizability of our results to just those domains.

Then, we use a literature database to search for papers
matching keywords relevant to dimensionality reduction.
We required that any paper in our analysis i) uses a di-
mensionality reduction algorithm as part of its data analysis
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and ii) presents a visualization of the dimensionally reduced
data.

We use the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guideline to conduct
systematic reviews [44]. We chose Scopus1 as our literature
database, based on its reproducibility and its wide cover-
age of the subject areas we chose [45]. The search strat-
egy searches for keywords (”Dimensionality Reduction”,
”UMAP,” ”t-SNE,” ”PCA,” ”Projection”) within Scopus sub-
ject areas of chemistry, biology, physics, and business within
the last five years. Subject areas were based on the Sco-
pus database labels. These projection techniques were used
based on the bibliometric findings that these were the most
common methods. In addition, these methods have been
studied previously by the visualization community.

Our initial Scopus search returned 52141 matching pa-
pers. We then filtered to only those papers with more than 5
citations, according to Scopus, to filter out papers with low
impact, reducing the number of publications to 21083. Next,
we conducted a stratified sample from this set down to 2000
publications, with 500 from each of our 4 subject areas. From
this set of 2000 publications, we used the Zotero Reference
Manager’s2 Find Available PDF function from our academic
library’s connection to identify 930 of those publications for
which we could easily find the PDF for review. While the
additional PDFs could eventually be found, we believe that
this filtering to 930 publications should serve as a fairly
uniform subsampling of the 2000 publications, which was
appropriate since we ultimately sought to select just a small
sample of the papers. This sampling is allowable because
we were not aiming to completely survey all works using
dimensionality reduction in these fields; rather, we aimed to
merely sample them.

We divided these 930 publications amongst the four
authors and scanned them to filter out any publications
that did not have any visualization of the dimensionality
reduction results, which removed 62% of the publications.
Then, from the resulting set of 347 publications, each author
randomly selected five publications from each of the four
subject areas, as designated by Scopus. This resulted in
71 papers being reviewed: 20 Biology , 20 Chemistry , 17
Business , and 14 Physics (upon closer reading, 3 out of

the 20 Business and 6 out of 20 Physics were incorrectly
classified by Scopus and instead came from other fields, i.e.
industrial design and engineering, and so were excluded
from our analysis).

We discuss insights from this paper’s winnowing pro-
cess in section 6. We note that the relatively small sample
of 71 papers included in our survey are not completely rep-
resentative of the more than fifty thousand papers returned
in our initial search in Scopus. However, we also believe
that 71 papers is a large enough sample to provide valuable
insights into the usage of DR outside of computer science.
In addition, we investigate the author list of these 71 papers
to ensure that there is not an overrepresentation of any
particular authors. Across these 71 papers, there were 705
unique authors with only a single author appearing on more
than one paper (two). We believe this sample represented a

1. Query strings included in the appendix.
2. https://www.zotero.org/about/

diversity of authors across these domains. In addition, we
analyzed the listed affiliations of these papers and found
that only 6 out of 705 unique authors listed an affiliation
in a department of computer science or information science
[46]–[51].

5 FINDINGS

In this section, we describe the findings from our literature
review. We organize our findings based on our grounded
analysis found in Section 4. We present findings related to
the data being projected, the design of the visualization
of the projected data, the tasks used in interpreting the
projection according to the in-line text and captions, and
the high-level workflows that the projections serve within
the flow of the publications. We list the subject area when
citing works from the survey to identify similarities and dif-
ferences (RQ3) observed during our in-depth review. Clas-
sification results can also be viewed and explored in our on-
line browser, available at https://dimension-reduction-vis.
github.io/. This browser includes screenshots of visualiza-
tions from each paper that we read as part of this report.

5.1 Data
5.1.1 Data Shape
We recorded the number of rows (i.e., points) and columns
(i.e., dimensions) of the data fed into the DR method if they
were reported by the authors. The data varied significantly
across the 71 publications we surveyed. The size of the data
ranged from as few as 7 data points [52] to more than twenty
million [47]. The number of dimensions of data ranged from
4 [53], [54] to more than 13 thousand [55].

When there are many data points, points are drawn
with some level of opacity to communicate the density of
the projected space as in Physics Cheng et al. [46], as in
Figure 6. In studies with few data points, the data points
were typically categorized to understand which points were
similar and which were different. For example, in Hasan
et al. [56] ( Physics ), eight different metals were analyzed
by their concentrations found in either soil samples (SS) or
food samples (FS) grown in that soil. PCA is used to project
those samples into a two-dimensional space, and the relative
location of the two types of samples in the projected space is
used to conclude that the distribution of metals was differ-
ent. Similar phenomenon was observed also for Chemistry
(e.g., relating 8 different states of a kinase [57]), Business
(e.g., analyzing relationships between the economies of Eu-
ropean nations [58] or Chinese corporate brands [53]), and
Biology (comparing different strains of bacteria [59]).

5.1.2 DR Method
We also examined the type of DR method used to pro-
cess the data. We identified that higher dimensional data
necessitates domain-specific and/or nonlinear dimension-
ality reduction techniques and that the types of data
found in different subject areas drove different methods.
Biology and Chemistry papers tended to employ more

nonlinear dimensionality reduction methods (e.g., UMAP,
t-SNE). The Biology publications that reported input di-
mensions reported an average of µ = 2186 dimensions and
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Chemistry µ = 751, compared to Business µ = 19 and
Physics µ = 12. It is likely that the phenomena being

captured in high dimensional data are not often visible or
might be difficult to identify in a linear projection like PCA.
For example, in the Chemistry field, Mazher et al. [60]
analyzed a dataset of 5,688 data points with 273 dimen-
sions, comparing different non-linear dimension reduction
methods, including UMAP, t-SNE, and a newer technique,
Potential of Heat-diffusion for Affinity-based Trajectory Em-
bedding (PHATE). The choice of the DR technique may also
be the result of disparate tasks in each subject area, which
we discuss shortly.

Surprisingly, in each domain, there were examples of
papers that used multiple dimensionality reduction tech-
niques because the techniques were seen as being useful for
different types of data. An example is found in Physics Lee
et al., in which various data extracted from a small sample
of newborn blood is analyzed [48]. The blood samples were
processed to read several categories of data: (1) cellular
composition, (2) plasma cytokines/chemokine concentra-
tion, and (3) several other biological measures like protein
composition and metabolomic data. In this case, PCA was
used to demonstrate the separability of the data for cat-
egories (1) and (2). However, the authors suggested that
a domain-specific technique, Data Integration Analysis for
Biomarker discovery using Latent cOmponents (DIABLO),
designed for biomarkers, was needed when integrating the
third category of data because of ”the complexity of the data
. . . and the heterogeneous nature of data measured on different
scales and technological platforms”.

In 14/71 (20%) of the papers in our survey, a technique
besides PCA, tSNE, or UMAP was used. This alternate
technique was frequently a factor analysis, which is a sta-
tistical technique that uncovers primary factors that result
in the separation of data points. In this analysis, the di-
mensions of the data are combined in a linear combination
into two different components similar to PCA, but use a
different method that is more standard within their domain,
such as orthogonal projections to latent structures discrim-
inant analysis (OPLS-DA) within Biology [61]. Single-cell
Biology is unique in that some nonlinear techniques have

been developed by computational biologists that are spe-
cially designed for high-dimensional biology data [47], [62].

5.2 Design
We categorize the design of the visualization of the DR view
by its plot type, its plot style, and the annotations used.

5.2.1 Plot Type
We consider four plot types, all variations on the scatter
plot. 3D and 2D describe scatterplots with three and two
dimensions, respectively. 2D+ describes a two-dimensional
scatterplot integrated with an additional plot, as in Fig-
ure 5a [66] (a), or if a three-dimensional plot is used where
one of the dimensions is not a projected axis, but instead
used to view correlation as in Chemistry Figure 5b [64].
Likewise, 1D+ features a one-dimensional plot of the data
points, as seen in Business Figure 5c [67]. The overwhelm-
ing majority (63/71) of papers included a 2D plot, with 9 3D
plots, 8 2D+ plots, and 7 1D+ plots.

5.2.2 Plot Style
We report whether plots have a legend, drawn axes, grid-
lines, and small multiples of scatterplots. Legends were
less common in Business (24%) and Chemistry (50%)
than Physics (57%) and Biology (85%). Axes were usu-
ally drawn (89%), while gridlines were less frequent
(37%), although they were markedly more frequent in
Business (65%). Small multiples were rarely used in
Business (12%), Chemistry (25%), and Physics (36%), but

frequently in Biology (65%). In some cases, small multiples
were used to analyze more than two composite dimensions
of the dimensionally-reduced data as in Business [68]
or Physics [56] (Figure 7a), while in other cases, the same
view of the DR space is presented multiple times with
different variables encoded by color as in Biology (Fig-
ure 7b) [66].

We additionally record whether the plots are annotated
using glyphs or symbols to signify another variable, tex-
tual labels directly on the plot, highlighting, and captions.
Captions, or textual descriptions spatially attached to the
figure, were frequently used across our survey corpus (82%).
Textual labels directly annotating visual elements (51%),
highlighting (37%), and glyphs or symbols (24%) were used
less frequently with no clear patterns of difference between
different subject areas. Annotations were commonly used
to highlight clusters and identify relationships between
clusters and other variables. In particular, many papers
including Chemistry [69] and Biology [70] would draw
enclosing circles around clusters or to signify 95% con-
fidence ellipses, and also use color and shape to show
additional attributes beyond those used in the projection.
These annotations were often explicit, using text directly on
the plot to label clusters. In some cases, arrows or connecting
edges were drawn to show connections between data in
two different known groups, as seen in Figure 7c. Axis
titles often note the percentage of variance explained using
text. We observe that authors also draw quadrants and
annotate different sections with interpretation. There is no
one common way of explaining axes.

5.3 Tasks
5.3.1 Task Descriptions
Through our grounded analysis and our close reading of our
survey of subject areas, we identified seven common tasks
that were commonly used in describing how the plots of
DR data should be interpreted. Each task is illustrated and
described below, and the percent of papers the task is found
in is reported. To address RQ4 , we compare our seven tasks
with the tasks identified in three previous visualization
works: Etemadpour et al. [20], Nonato & Aupetit [2], and
Xia et al. [21]. Notably, we only consider tasks that are rel-
evant to the interpretation of static views of dimensionally-
reduced data, rather than those tasks available in interactive
systems. As a result, we exclude tasks that explicitly refer
to user interactions with DR, such as those from Sacha et
al. [1].

Single Point (9/71 = 13%). In this task, a single data
point is highlighted and described, whether in the main
text or within a caption. Its place within the projected space
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(b) 2D+ where one dimension is not a
projected axis

(a) 2D+ where auxiliary visualization
is added besides the projection

(c) 1D+

Fig. 5. The example figures for 2D+ and 1D+ plot types (Section 5.2.1). (a) 2D+ plot in which an auxiliary plot is added to augment the projection.
(b) 2D+ plot in which an auxiliary axes is added to represent the dimensions that are not a projected axis. (c) 1D+ plot consists of a 1D projection
and an auxiliary plot. Found in [63]–[65], respectively

Fig. 6. Three plots of 22 million measurements of peripheral blood
mononuclear cells, or PBMCs, gathered via flow cytometry [47]. When
the number of elements in the projections is high, transparency is often
used so that the general distribution of the data in the projected space
can be seen.

is used to provide insight into the particular point, as in
Physics identifying the distance of a control point from the

rest of volatile compounds in the DR view [71]. The closest
proposed task is from Etemadpour et al. [20] to identify the
closest cluster to a given object (fCluObj). Nonato & Aupetit
mention a similar task of finding a seed point, and Xia et al.
do not include a task on identifying a single point. We find
that the interpretation of a single point is not a common task
within our survey, but when it is a task, it typically involves
identifying proximity to a cluster.

Multiple Points (8/71 = 11%). In this task,
multiple data points are described and com-
pared. This comprises the tasks of identifying
nearest neighbors from Etemadpour et al.. but
can also be broader to account for expected relationships be-
tween points. For example, in Biology Cui et al., particular
macrophages are identified in a PCA view as being related
to pulmonary fibrosis lungs [72]. In Business Feuillet et al.,
ten years of French soccer club seasons are projected into
a PCA plot, and multiple points corresponding to multi-
ple seasons of the same club are analyzed to understand
changes in strategy over time [73]. This example may be
similar to the task of Nonato & Aupetit of identifying a
path within dimensionally-reduced data. Again, this is not
a common task, suggesting that individual points are not
typically the object of analysis within our survey.

Single Cluster (23/71 = 32%). In this task,
multiple data points are described and compared
based on their visual clustering within the pro-

jected view. It is identified by both Nonato & Aupetit and
Xia et al. as an exploration task to discover a cluster within
a projected view. In Etemadpour, this task is separated into
two subtasks: #SClu i.e., estimating the number of subclus-
ters within a cluster, and #Obj estimating the number of
objects within a cluster. However, we did not find counting
to be a common action in analyzing a cluster. Instead, a
cluster might be analyzed to develop an explanation for
the isolation of some particular subgroup within the data.
Examples include Biology Potluri et al. identifying a set
of patients with a particular metastatic disease phase being
visually clustered together in a PCA view of antibody profile
data [55], or Chemistry Wang et al. identifying a cluster of
transitional states of an enzyme as shown in Figure 7c [57].

Multiple Clusters (46/71 = 65%). In this
task, multiple clusters are analyzed. This could
be to compare different groups. This is found
in Chemistry comparing treated vs. untreated
samples [52], [74] and different organic sample loca-
tions [75], [76]. It is also found in Physics to compare
different types of celestial bodies [77]. Alternatively, it could
be to try to define the different clusters that emerge. As
an example, in Business [78], Ji et al. interpreted the
distance between clusters of different types of biofuel as
being greater than the distance between clusters based on
the temperatures at which those fuels were burned. This
was the most common task found in our survey, but the
comparison of clusters is not explicitly included as a task
in any of the visualization works we compared to. Closest
is the distance comparison from Xia et al., but that task
specifically refers to identifying the closest cluster to a given
cluster rather than interpreting the distance and relative
locations of two arbitrary clusters. This may not be a focus
of visualization research because it is fraught with potential
misinterpretations we describe in Section 5.5.1, including
the interpretation of global distances and nonlinear axes.

Global Patterns (34/71 = 48%). This task was the second-
most-common of the seven we identified. In this task, differ-
ent regions of the projected view independent of particular
clusters are ascribed meaning. This typically involved in-
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(a) (b) (c)
Plot Styles Annotations

Fig. 7. The example figures for different plot styles and annotations. (a) Small multiples leveraged to analyze more than two composite
dimensions [56] (b) Small multiples to compare different variables at once [66] (c) Annotations for depicting the connections between data items [57]

terpreting the axes or quadrants of the projected view in
order to explain clusters or verify known relationships in
the data. Related subtasks for interpreting global patterns
are identified in Nonato & Aupetit including naming and
discovering relationships between reduced dimensions and
original dimensions. Examples can be found in Chemistry
in interpreting different clusters of states of matter [79]
or locations where samples were taken [80] and likewise
in Physics to explain principal components of climate
data [81].

In some cases, more than two dimensions of
the dimensionally-reduced data are interpreted.
Biology Jin et al. [59] analyze the first four

principal components for correlations with input
features using a loading plot, seen in Figure 10, which
then informs the interpretation of the corresponding PCA
view. Similar analyses of the principal components are split
into one-dimensional plots shown in Figure 13 side-by-side
with traditional two-dimensional scatterplots (not shown)
in Biology [82].

The analysis is not only axis-aligned, as in
Chemistry Wang et al. [57] (Figure 7c), where diagonal

directions are interpreted as state transitions of an enzyme.
This type of linear interpretation of a space is similar to
the identified task of discovering a path within the projected
view from Nonato & Aupetit.

We believe that the popularity of this task within our
survey points to unclear guidelines on how to interpret
dimensionally-reduced data. The potential distortions out-
lined in Nonato & Aupetit indicate that the broad analysis
of the dimensionally-reduced data can result in misconcep-
tions about the source data. We believe that there are oppor-
tunities for visualization researchers to provide more precise
interpretations via the mitigations suggested in Nonato &
Aupetit, which we describe in Section 6.

Relationship to Other Variables
(29/71=41%). In this very common task, points
in the projected view are additionally encoded
with some additional attribute and the projected
view is compared to any natural ordering provided by
the additional encoding, commonly to verify that the

projection separates the data by that additionally encoded
data. For example, in Biology Ocasio et al. (Figure 11,
far right), scatterplot points are colored by expressed
transition state, and the transition of colors in the plot is
annotated to demonstrate that the projected view captures
the phenomenon of state transition. Often, a categorical
class is used in a symbol or color encoding, which was
found in Business [83], Biology [84], and many others.
In other works in Biology , it was common to present
complex data in small multiples with each scatterplot
encoding a different variable, as seen in Figure 7b [66] and
others [85]–[87]. This technique was sometimes found in
Chemistry as well [88]. This very common task was not

included explicitly in the visualization works we compared
to, and we believe it should be an opportunity for research,
as the use of glyphs, symbols, and other encodings can
affect the perception of dimensionally-reduced data.

Outliers (5/71 = 7%). In this last task,
outlier points in the projected view are de-
scribed to interpret the data projection. In
Business Onuferová et al., Slovakian travel

agencies are analyzed both statistically and visually. Vi-
sual outliers within a PCA view are then termed as ”ex-
tremes” [89]. In a similar manner, Business [90] highlight
outliers in a PCA view of a data envelopment analysis of
heat management companies to identify companies that
are at risk of bankruptcy. The identification of outliers is
a task described by Nonato & Aupetit. The interpretation
of outliers is related to tasks identified by Etemadpour et
al. (fCluClu) and Xia at el. (membership identification and
distance comparison) in which a point is identified as being
close to one cluster vs. another. However, in our survey
we found that points far from clusters (i.e. outliers) were
more frequently described rather than those close to cluster
centers.

5.3.2 Summary of Differences from Prior Works
Compared with Etemadpour et al., we did not find that the
count of the number of subclusters (#SClu), the number of
outliers (#Out), the number of objects within a cluster (#Obj),
or the relative densities of clusters (rDens, also identified as a
primary task in Xia et al [21]) to be commonly analyzed [20].
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In contrast, in our survey we found that the analysis was
generally coarse, describing a phenomenon found across a
dataset, and so the count of objects within clusters (or their
visual density) wasn’t discussed. In addition, outliers were
identified in smaller datasets in several Business works,
but they were analyzed individually rather than counted.

Besides density comparison, Xia et al noted three addi-
tional typical tasks: cluster identification, membership identifi-
cation, and distance comparison. The identification of clusters
is found in our literature review, but the measurement of
distance and the cluster membership of individual points
are not commonly found.

Nonato and Aupetit present a much more complete list
of 32 tasks, with one subgroup group of 8 tasks, Explore Items
in Base Layout. These tasks include Discover Clusters, Discover
Paths, and Discover outliers. However, it also includes inter-
actions such as navigation and brushing, and some more lo-
cal investigation into neighborhoods. In addition, out of the
more than 40 papers surveyed, the tasks were only found in
a maximum of 7 papers in their survey, suggesting that they
were not prevalent tasks in the visualization literature.

We believe that the analyses and interpretations we
observed in our literature review represented a different
sample than those surveyed in the four prior works, which
observed the use of dimensionality reduction in visualiza-
tion research. In our observations of our literature review,
counts of clusters or objects may not have been important
because they are not useful in confirming prior hypotheses
about the data. The authors typically used the presence of
clusters or the separability of clusters to provide evidence
that particular phenomena well-known in their commu-
nities (like the difference between cell types or physical
sample sources) are identifiable in the data. The number
of individual subclusters is not relevant to these types of
hypotheses. The place of dimensionality reduction in work-
flows within visualization papers may be different than the
place found within domain papers.

The four prior works are not a complete union of the
proposed task analyses of dimensionality reduction use
cases, although we note that Nonato and Aupetit do cite
many design studies in their analysis. It is likely that there
have been design studies, including collaborations between
visualization researchers and domain scientists. We do not
include individual design studies in the scope of this paper.
However, future work in surveying design studies in visual-
ization research could potentially surface novel tasks. While
there are existing surveys on dimensionality reduction in
visualization research, they do not include a task meta-
analysis. IN section 6, we further discuss the role of design
studies and surveys in our opportunities for visualization
researchers.

5.4 Workflows
Across domains, we encountered three common workflows
where dimensionality reduction results were explicitly visu-
alized in describing a data analysis process. These contrast
in some ways to popular understandings of the role of visu-
alization, such as Pirolli and Card’s sensemaking loop [92]
or Van Wijk’s model of the value of visualization [93].
These models could suggest that the visualization of high-
dimensional data in a 2D space would largely be done

for exploratory data analysis, to make sense of the data,
understand trends, and generate hypotheses. However, in
our analysis, we found that there was often a mix of con-
firmatory data analysis, in which the generated projection
was used as an ad-hoc statistical test [94]. In this case, the
visual separation of clusters, for example, could be used
as evidence that data is separable in the high-dimensional
space. This separability is then extrapolated to make a
judgment about the value of the data for later analysis.
Workflow 1: Exploratory Data Analysis One common
workflow is to use a projection for exploratory data analysis
to generate hypotheses, which are then verified by other
statistical tests. In this workflow, a complex phenomenon is
being studied to develop a greater understanding, and the
goals can be developed iteratively as the data is explored.
The workflow is typically seen when a rich dataset was
assumed to be related to a particular phenomenon, but the
causality or model connecting the data to the phenomenon
was not known, as in Biology mass spectrometry data [63]
and gene expression data [95], Physics remote-sensing
reflectance data [96], or heuristically gathered data in
Business such as forest management [97], agricultural [98]

or nutritional [99] indicators, and survey data [100], [101].
For example, in Philipsen et al. [63], mass spectrometry

imaging data of the fly brain is used to understand the
effect of a treatment, modanifil. This generates hundreds
of spectra, each one a dimension of data, and the goal of
the analysis is to understand which spectra might change
in response to the treatment. As seen in Figure 5a, the
spectroscopy data is projected down to two dimensions
with PCA, showing separability in the second principal
component. Then, a loading plot shows which spectra are
most discriminatory in the second principal component.
This generates hypotheses that the bands of spectra that
peak or valley may quantify the effect of the treatment.
After identifying these spectra, the authors explain ”it is
hard to interpret the precise differences based on the scores and
loadings. Hence, the changes in the level of each molecular species
are measured and evaluated with statistical analysis.”

Similar workflows were used in Physics literature. As
described in Conterosito et al. [102], dimensionality reduc-
tion can be applied to physical data to ”speed up analysis
with the specific goals of assessing data quality, identify-
ing patterns where a reaction occurs, and extracting the
kinetics.” This type of analysis was also used to generate
hypotheses in Kobaka et al. [103] to identify differences in
concrete mix designs.
Workflow 2: Confirmatory Data Analysis In the second
type of workflow, the visualization of the dimensionality
reduction results is used to draw a conclusion rather than
generate a hypothesis. The hypothesis is often that the high
dimensional data has sufficient information to separate the
variable of interest, often a binary or categorical variable.
This workflow is frequently used when there is a well-
known phenomenon that is potentially expensive to mea-
sure. An alternative method may be proposed to gather
high-dimensional measurements of the object to be clas-
sified and then hypothesize that in this high-dimensional
measurement, the data is separable. This measurement may
be a novel process (i.e. Physics electric tongue [91], Surface-
enhanced Raman scattering sensors [104]), Chemistry (i.e.
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(a) (b)

Fig. 8. We identify three common workflows for using visualization of dimensionality reduction results, two of which are shown here and one is
evident in a previously highlighted figure in Figure 5a. The three workflows differ based on whether the visualization is used for exploratory data
analysis as in Figure 5a [63] where the relationship between frequencies in a spectroscopy and clusters is being explored, confirmatory data
analysis as in (a) of this figure [91] where known groupings in the data are verified to exist in the projected space, or a combination of both as in
(b) of this figure [72]. In this combined workflow, known groupings are first used to informally validate the layout. Then, the relationship between
additional variables (in this case, the activations of two transcription factors in different types of tissue) is explored in the projected space.

different types of spectrometry of liquids [105]–[107] or elec-
tric measurements of scent [49], [108]), Biology (i.e. micro-
biome data [81], MALDI fingerprinting [109] or gene expres-
sion data [49]), or Business (i.e. novel qualitative analyses
of businesses, countries, or groups of consumers [53], [54],
[58]).

Physics Pauliuc et al. [91] provides an example where
PCA is used to reduce data from a measurement of honey
using a process called a Voltammetric Electronic Tongue to de-
termine which flower influenced its flavors. In this common
type of confirmatory data analysis workflow, the separabil-
ity of clusters in the visualization (see Fig. 8 (b)) is used
as confirmation that the process can successfully recover the
type of flower, or if the honey was not the product of a single
type of flower but rather a combination of flowers, which is
a less desirable type of honey. The process being validated
may also be a statistical process, as in Business [110], where
authors conduct a cluster analysis based on survey data
analyzing internet habits of older populations in Spain. A
PCA view of the data is annotated with the convex hull of
the discovered clusters, showing the separability of most of
the clusters.

A novel example of this workflow is found in
Physics Otten et al. [67], where a deep generative model is

used to generate events in a physical process. The analytical
goal is to interpret the data generated from the deep gener-
ative model, evaluating it for use in further analysis. PCA
is used to reduce the dimensionality of a hidden layer of
the generative model to the first two principal components.
However, before visualizing the data, that two-dimensional
space is converted to polar coordinates, and samples are
taken on a grid in polar coordinates (Fig. 12). Samples on
this grid are given a visual encoding representing multiple
dimensions of the underlying physical data.

Lastly, this type of workflow was used not only
to confirm hypotheses but also to reject hypotheses.

Chemistry Nurani et al. [111] used H-NMR spectroscopy
to extract metabolite data about turmeric plants in order to
classify the particular species. They use several dimension-
ality reduction techniques to identify clusters and evaluate
separability and conclude that PCA is only able to distin-
guish certain species and not others: ”Chemometrics of PCA
could not differentiate C. longa, C. xanthorrhiza, and C. manga
clearly (data not shown). It might be caused by the large variations
of the variables; therefore, the principal components (PC) were
not able to represent the original variables.” Interestingly, they
do not include a plot of the results they use to make this
conclusion. They go on to state that a different DR technique
was able to distinguish between them: ”Observation using
supervised pattern recognition, namely PLS-DA using 7 PC,
could classify C. longa, C. xanthorriza, and C. manga resulting in
three different classifications.”

It is likely that this type of workflow is broadly analo-
gous to assessing the value of a projection by its perceptual
cluster separability, which is a quantitative metric describing
the distance and clarity of separation that has been iden-
tified as a quality metric for projection techniques [112].
Cluster separability on projections of data with known
ground truth can be used in a quantitative evaluation or
comparison of different projection techniques.
Workflow 3: Confirmatory then Exploratory Data Analysis
In the third workflow, a projection is generated to ultimately
be used for exploratory data analysis to generate hypotheses
for the correlation between data features. However, in order
to build a greater level of confidence in the projected view,
it is first evaluated via confirmatory data analysis.

This workflow is frequently seen in domains where there
is complex input data being used to study a phenomenon
that is not well understood. First, the projection is inspected
visually, with points colored according to some known
quantity that should be separable within the data. Visual
separation confirms that there is some meaning in the layout
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Fig. 9. In Xu et al. [50], authors use a Variational Autoencoder (VAE) to
reduce the dimensionality of in vivo image frames of mouse neurons.
The authors recorded brain imaging data for two types of mice doing
three types of tasks, S1, S2, and S3. The linear distance from each point
to the cluster center of points in task S1 is reported in the bottom plots.
However, the VAE method can distort distances, making this possibly
misleading information (more in Section 5.5.1).

of the points in the projected view. Then, the projection is
repeated but with additional data encoded on each point
to develop new hypotheses and potentially enrich the un-
derstanding of the meaning of known separable groups.
The analysis then continues into additional exploration and
confirmation of those hypotheses through other statistical
tests.

This type of workflow was typical in Biology (eg.
[55], [72], [113]–[115]) where many physiological processes
interact and are typically represented by a high dimensional
dataset, and there is a large space of potential hypotheses
that can be narrowed through exploration of high dimen-
sional data. As an example, in Cui et al. (see Fig. 8(c)), a
tSNE projection of lung cells is first projected to confirm
that abnormal tissue is separable from normal tissue, as
well as cell type [72]. Then, that view is colored by the
variables of interest, pJUN and pAKT, to understand if their
concentration differs from abnormal tissue to normal tissue.
It is identified that fibrotic lung tissue sees high readings
of both variables in a particular cell type, fibroblasts, which
are then further analyzed. This technique can sometimes be
used to color many variables of interest, making use of small
multiples (see Biology Figure 7b).

One notable example was found in Business Teng et
al. [65]. A factory process is being optimized, and PCA
is used to find a subset of processes that might be easily
experimented on together without disrupting too much of
the manufacturing process. First, PCA scores for the first
four components are shown against the high dimensional
features and confirmed to find meaningful clusters, and then
the clusters are used to drive the design of experiments and
optimizations using domain knowledge of the factory itself.
This analysis is seen in Figure 5c.

5.5 Gaps between Research and Data Analysis
Our literature review identified gaps between the practical
use of DR and the relevant research conducted by the vi-
sualization community. The findings ignite open challenges
for the visualization community to reduce the gap.

Fig. 10. In Jin et al. [59], quadrants of a PCA loading plot (in which
points represent features) are used to understand how features are
(anti-)correlated with the first two principal components.

5.5.1 Inappropriate Usages
Our analysis reveals inappropriate usages of DR techniques
that could lead to erroneous conclusions about the relying
data, e.g., relying on assumptions that were not guaranteed
by the methods being used. Please refer to Figure 11 for
examples.
Inappropriate choice of DR techniques The visualization
community has analyzed which DR techniques are best
suited for various visual analytics tasks, such as cluster
identification and neighborhood search. For example, Xia
et al. [21] reveal that UMAP and t-SNE are the most ap-
propriate techniques for cluster identification tasks. They
found that PCA is not suitable for the task, which means
that PCA shows inaccurate cluster representations. This is
largely achieved by conducting benchmark studies, where
the appropriateness of DR techniques is evaluated using
scores from DR quality metrics [14] or human task accuracy
[20], [21].

However, we identify that research works in four do-
mains often use DR techniques that do not match with
their task. We especially find that PCA is widely used for
cluster identification tasks (Figure 11a), although it is less
suitable for the task [21]. This inappropriate usage degrades
the reliability of the findings made by the research work;
for example, the clusters found by the practitioners may not
stay as clusters in the high-dimensional space [8], [116].
Inappropriate plotting of DR techniques The visualization
community also informed practitioners how to plot DR
projections properly. For example, Faust et al. [117] empha-
sized that conventional x and y cannot be used to interpret
nonlinear DR techniques, proposing a new nonlinear axes
visualization technique. Jeon et al. [118] and Aupetit et al.
[119] claimed that conventional brushing that selects 2D
regions should not be used for DR projections, contributing
new brushing techniques that locally resolve distortions.
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Song et al. [88] Alibert et al. [107]Lin et al. [43] Ocasio et al. [90]

(a) PCA is used for cluster 
identification tasks,  although its 
design does not match the tasks

(e) Although axes in nonlinear DR projections lack meaning, 
they are plotted with the projections

(b) Four quadrants of projections 
are plotted, although the values of 
data points have no meaning

(d) Brushing is used, although it may 
inaccurately select or filter out 
clusters in DR projections

(c) Global distances between clusters are interpreted 
as their actual high-dimensional distances, casting 
doubt on the credibility of the interpretations

Fig. 11. The examples of our findings on inappropriate usage of DR techniques (Section 5.5.1). These improper usages lead data analysis to have
limited reliability, casting doubt on the conclusions in which research works made.

Still, we find cases where research works in four domains
do not align with such guidelines. For axes plotting, we
identify papers that plot axes with titles such as UMAP1 &
UMAP2 or TSNE1 & TSNE2 or with grid lines (Figure 11e).
We also find the case in which four quadrants of the di-
mensionally reduced view are used to define four clusters
(Figure 11b), suggesting that the positive and negative di-
rections of the axes hold semantic meaning for the authors.
Regardless, these annotations could mislead audiences, in
particular, those unfamiliar with the properties of the un-
derlying DR techniques used.

In terms of brushing, we find that several papers em-
phasize the clusters using fixed-shape brushes (e.g., rect-
angular, ellipse, or spheres), which violates the guidelines
made by the visualization community (Figure 11d). As with
inappropriate technique selection, such a violation degrades
the credibility of brushed clusters.
Inappropriate interpretation of data patterns The visualiza-
tion and machine learning community provided guidelines
to interpret DR projections based on the design of the DR
techniques used. For example, Wattenberg et al. [12] guided
practitioners not to interpret global distances between clus-
ters in t-SNE plot as their distances in the original high-
dimensional space. The claim has been further verified by
many articles, not only for t-SNE but also for other nonlinear
DR techniques like UMAP [13], [62], [120]–[122].

However, our review reveals that research works in four
domains often do not comply with such guidelines. For
example, it was common to interpret the global distances
between clusters in DR projections that do not preserve the
global structure (Figure 11c), casting doubt on the credibility
of the analysis results.

In another example, Physics Xu et al. [50] project frames
of mouse brain imaging data into a 2D latent space using a
Variational Autoencoder (VAE) (Fig. 9). The authors stratify
the data points into groups based on experimental condi-
tions. For each group of points, they compute a distribution
radius defined as “the average distance of all frames to the
center in the 2D latent space.” The authors proceed to draw

conclusions by comparing the distribution radii among ex-
perimental conditions. Because VAE is a potentially non-
linear method, it is possible for distances in the 2D space to
be distorted, preventing linear comparison.
Execution of statistical test using dimension-reduced data
The biology and biostatistics community provided guidance
not to conduct statistical tests using dimension-reduced data
[123], [124]. This is because the data is distorted during the
reduction process and then fed to the statistical test, which
means that it has been “double-dipped.”

However, several research works in four domains apply
statistical tests like the t-test to the PCA results, casting
doubt on the validity of the test (e.g., [125]). Even though
the solutions for this problem have been widely proposed in
the biology community [126]–[129], the incorrect execution
of statistical tests is rampant in the field.

5.5.2 Issues with Reproducibility
We find that in most cases, the authors specified the soft-
ware package (e.g., scikit-learn [130]) that was used
to perform DR and reported how they preprocessed data.
However, papers failed to mention whether optional pa-
rameters (e.g., perplexity in the case of t-SNE) were used,
degrading their reproducibility. This is because most works
have used the default hyperparameter settings of the library
they used. Still, there are possibilities in which hyperpa-
rameters are cherry-picked to generate DR projections that
best align with the papers’ hypotheses. The absence of a
hyperparameter report also raises concerns about whether
the hyperparameter values have been properly optimized,
negatively impacting not only reproducibility but also the
credibility of the data analysis.

6 DISCUSSION

In this section, we summarize the takeaways of our survey
for both target audiences: 1) visualization and machine
learning researchers and 2) domain-centered data analysts
and practitioners. We note that due to our selection of four
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Fig. 12. In Otten et al. [67], the PCA scores are converted to polar
coordinates, and points within that space are visualized as vectors, with
the thickness of the green arrow and directions of the blue and red
arrows encoding physically meaningful values in the original data.

Fig. 13. In Diehn et al. [82], spectra from pollen samples comprising
five species of grass were obtained using Fourier-transform infrared
spectroscopy (FTIR) for chemical characterization. PCA was applied
to a dataset of fifty observations (each observation representing the
average of 20 pollen grains from a single plant) of the spectral range
from 800 to 1,800 cm−1. The authors plot the loadings for PCs 1
and 2 against the measured spectral range. The authors note that two
groups of grass species (which appear in different regions of a PC1-PC2
scatterplot) can be distinguished from each other by taking advantage
of the extreme values observed in the loading plots around 1,678 cm−1

for PC1 and around 945 cm−1 for PC2, which correspond to known
molecular vibrations of proteins and carbohydrates.

domains, there are some limitations to the generalizability
of our findings, but we believe that the diversity of our
four domains lends weight to our findings and, thus, our
takeaways and open problems.

6.1 Takeaways For Domain Researchers
A theme of this survey is that there is a disconnection be-
tween DR-focused research in the visualization community
and DR usage in the subject areas of Biology, Business,
Chemistry, and Physics. Despite a diversity in the types of
findings that authors discuss when referencing DR plots, we
find that most use 2D scatterplots for visualization. Certain

types of such findings may benefit from alternative visual
encodings or may be apparent without the usage of di-
mensionality reduction. We encourage researchers using DR
methods to ask themselves what value the DR added to their
analysis. This way, the process of creating visualizations can
be centered around the communication of those findings
that are intrinsic to the usage of DR.

Domain scientists and visualization researchers should
recognize the ways in which DR results can be interpreted
and visualized correctly. Solutions to problems discussed in
Section 5 have been proposed in certain subject areas, but
researchers in others may not yet be aware. For instance,
den-SNE and densMAP published in Biology enable inter-
pretation of point density that would be erroneous using
the original t-SNE and UMAP algorithms [131]. PHATE,
also published in Biology, is a nonlinear DR method that
preserves global structure and patterns, such as branch
points and trajectories [62]. Methods that account for double
usage of data during statistical testing have been proposed
in Biostatistics [126]–[129].

We hope this survey motivates further qualitative anal-
yses of how dimensionality reduction techniques are used
and visualized within and across fields. Domain scientists
may be able to provide DR usage guidance that is tailored
to the data types and analysis workflows that are commonly
encountered in the field.

6.2 For Visualization Researchers

We organize our takeaways for visualization researchers
into two categories. First, we provide takeaways into the
usage of DR in visual analytics systems, and then focus on
the need for developing new visual analytics techniques to
address the needs of domain scientists.

6.2.1 Mismatches in Usage Patterns
There were many differences between the types of dimen-
sionality reduction used in our observed domain literature
and that found in visualization research. In a recent survey
of the use of embeddings in visualization systems by Huang
et al. [132], it was identified that most visual analytics
systems use nonlinear dimensionality reduction algorithms,
such as t-SNE or UMAP. Similarly, according to a survey by
Espadoto et al., 33 out of 44 (75%) dimensionality reduction
techniques used in visualization papers are nonlinear meth-
ods. In our report, we find that PCA is overwhelmingly the
most common technique. Visual analytics designers could
consider using linear techniques more frequently, because
of their familiarity and ease of interpretation - especially if
the phenomenon being studied is visible within the linear
projected view or the number of data points is low. Nonlin-
ear techniques can be superior to linear techniques at cluster
separability and anecdotally in identifying clusters in image
databases. However, Based on the workflows identified in
section 5, linear techniques may be more helpful in confirm-
ing or generating hypotheses.

In addition, visual analytics designers should consider
alternatives to scatterplots that better support their users’
tasks. If the goal is to understand differences between
known clusters or categories in the data, it may be better
to include other encodings of cluster distances or vector
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distances between data points. Alternatively, visual analyt-
ics designers can consider interpretability as an objective in
their choice of linear projection [133].

Lastly, we note that out of all papers included in our
report, none used the types of interactive analysis that are
frequently featured in visual analytics systems for the type
of cluster analysis frequently used on high-dimensional
data [134], [135]. Instead, domain scientists use standard
techniques that are more easily reproducible. Creating easily
usable open source software and publicizing methods for
interpretability through tutorials or guidelines papers in
meaningful venues for domains could improve our ability
to reach other communities.

6.2.2 Research Opportunities for the Visualization Commu-
nity
Needs for a unified guideline that informs when to use
which techniques The visualization field provided several
guidelines for selecting a DR technique that matches ana-
lytic tasks [2], [21], [22]. Also, the community has provided
several empirical studies that ground these guidelines [14],
[21], [136]. However, as described in the recent survey by
Espadoto et al. [14], these guidelines are fragmented, and
the interaction techniques developed by the visual analytics
community also broaden the ambiguity in selecting appro-
priate DR for a given context dimensionality reduction [1].
There is a need for simple guidelines on when to use what
technique and how to incorporate interactive techniques
without introducing bias. This would mitigate the risk of
early adopters within the domain sciences from using novel
techniques. An empirical guidelines work was published
more than a decade ago by Bertini et al. [27], but the
landscape of dimensionality reduction has changed enough
that there is a demand for more guidelines.
Tangible and detailed guidelines beyond the selection
of techniques This survey reveals that domain researchers
often use DR techniques in ways that can lead to misinter-
pretations (Section 5.5.1), and their methodologies often lack
reproducibility Section 5.5.2. These findings clearly indicate
the need for more detailed guidelines that help domain
researchers . As aforementioned, the visualization field pro-
vides several guidelines for using dimensionality reduction
(DR), but these guidelines mostly map analytic tasks to
techniques [2], [21]. They support domain researchers in
selecting good techniques but do not offer insights on inter-
preting and communicating the projections. More tangible
guidelines that fit domain researchers with lower visual-
ization and machine learning literacy are thus needed. For
example, a detailed protocol to comprehensively report DR
execution and its results in their paper may substantially
benefit in enhancing the reproducibility of DR-based visual
analytics. This challenge has been noted previously by di-
mensionality reduction researchers [117], [137], [138]; based
on the usage patterns found in our surveyed domain papers,
we recommend visualization researchers build toolkits and
target new venues for their design studies.
Packaging up our techniques into a toolkit We generally
found that domain scientists used DR techniques that were
standard packages in common languages such as R or
Matlab, or in some cases used languages developed for their
particular type of data like viSNE [139] or PHATE [62].

However, the visualization field currently lacks libraries that
serve various techniques developed by a community. It is
clear that we can improve the usability of these techniques
by packaging them in clean interfaces available in package
managers, which would also improve the likelihood that
domain experts will use them [24]. We also recommend
that researchers make these packages more actionable. As
Draco [140] did for general visualization design, we can help
domain experts by building a framework that automatically
recommends DR techniques and hyperparameter settings
that align with the experts’ task and data domain.
Greater impact for design studies through targeted pub-
lishing Our study indicated that in the four fields we have
studied, there has not been penetration of best practices
from our community. We believe there is an opportunity for
greater impact if we encourage authors of design studies
to publish within the venues of the application domain,
in addition to visualization domains. By presenting the
value of our approaches on datasets that are meaningful to
domain scientists within their venues, we can make it easier
for domain scientists to understand the value and risk of
appropriate interpretations.

We also recommend that surveys of design studies also
target applied domains. While most surveys count domain
scientists among the intended audience of their work, it
may be unlikely that surveys in the visualization research
community are ever encountered by domain scientists. To
mitigate this gap, we recommend that visualization re-
searchers consider writing an executive summary of survey
findings and share that within applied domains, potentially
as letters or notes within their professional publications.

7 CONCLUSION

In this paper, we describe the state of the art in the usage
and interpretation of dimensionality reduction in domain-
specific data analysis across four domains: biology, chem-
istry, physics, and business. We conduct three iterations
of analysis: 1) a bibliometric analysis of papers citing di-
mensionality reduction techniques, 2) a loose analysis of
papers using dimensionality reduction techniques, and 3)
a structured analysis of papers across four domains from
the last 5 years. We classify their usage and interpretation
of DR techniques and then describe qualitative findings. We
believe this study provides valuable insights to both domain
scientists and computer science researchers in understand-
ing the usage of tools and the gaps that could drive further
research within the visualization community.
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[95] J. F. Muñoz, T. Delorey, C. B. Ford, B. Y. Li, D. A.
Thompson, R. P. Rao, and C. A. Cuomo, “Coordinated
host-pathogen transcriptional dynamics revealed using sorted
subpopulations and single macrophages infected with Candida
albicans,” Nature Communications, vol. 10, no. 1, p. 1607, Apr.
2019. [Online]. Available: https://www.nature.com/articles/
s41467-019-09599-8

[96] P. K. Lange, P. J. Werdell, Z. K. Erickson, G. Dall’Olmo, R. J.
Brewin, M. V. Zubkov, G. A. Tarran, H. A. Bouman, W. H.
Slade, S. E. Craig et al., “Radiometric approach for the detection
of picophytoplankton assemblages across oceanic fronts,” Optics
Express, vol. 28, no. 18, pp. 25 682–25 705, 2020.

[97] F. Riccioli, R. Fratini, E. Marone, C. Fagarazzi, M. Calderisi,
and G. Brunialti, “Indicators of sustainable forest management
to evaluate the socio-economic functions of coppice in tuscany,
italy,” Socio-Economic Planning Sciences, vol. 70, p. 100732, 2020.

[98] M. Berton, S. Bovolenta, M. Corazzin, L. Gallo, S. Pinterits,
M. Ramanzin, W. Ressi, C. Spigarelli, A. Zuliani, and E. Sturaro,
“Environmental impacts of milk production and processing in
the eastern alps: A “cradle-to-dairy gate” lca approach,” Journal
of cleaner production, vol. 303, p. 127056, 2021.

[99] M. Moreira, J. Garcı́a-Dı́ez, J. De Almeida, and C. Saraiva, “Eval-
uation of food labelling usefulness for consumers,” International
Journal of Consumer Studies, vol. 43, no. 4, pp. 327–334, 2019.

[100] E. Maghlaperidze, N. Kharadze, and H. Kuspliak, “Development
of remote jobs as a factor to increase labor efficiency,” Journal of
Eastern European and Central Asian Research (JEECAR), vol. 8, no. 3,
pp. 337–348, 2021.

[101] G. Hetenyi, A. Lengyel, and M. Szilasi, “Quantitative analysis
of qualitative data: Using voyant tools to investigate the sales-
marketing interface,” Journal of Industrial Engineering and Man-
agement (JIEM), vol. 12, no. 3, pp. 393–404, 2019.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3567989

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.mdpi.com/2079-6374/9/1/8
http://jbcs.sbq.org.br/audiencia_pdf.asp?aid2=5812&nomeArquivo=2019-0398AR.pdf
http://jbcs.sbq.org.br/audiencia_pdf.asp?aid2=5812&nomeArquivo=2019-0398AR.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0959652621028766
https://linkinghub.elsevier.com/retrieve/pii/S0959652621028766
https://link.springer.com/10.1007/s00216-020-02628-2
https://applbiolchem.springeropen.com/articles/10.1186/s13765-019-0425-5
https://applbiolchem.springeropen.com/articles/10.1186/s13765-019-0425-5
https://journals.economic-research.pl/oc/article/view/1755
https://www.nature.com/articles/s41467-019-09599-8
https://www.nature.com/articles/s41467-019-09599-8


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, AUGUST XXXX 19

[102] E. Conterosito, M. Lopresti, and L. Palin, “In situ x-ray diffraction
study of xe and co2 adsorption in y zeolite: Comparison between
rietveld and pca-based analysis,” Crystals, vol. 10, no. 6, p. 483,
2020.

[103] J. Kobaka, “Principal component analysis as a statistical tool for
concrete mix design,” Materials, vol. 14, no. 10, p. 2668, 2021.

[104] R. Yasukuni, R. Gillibert, M. N. Triba, R. Grinyte, V. Pavlov, and
M. Lamy de la Chapelle, “Quantitative analysis of sers spectra
of mnsod over fluctuated aptamer signals using multivariate
statistics,” Nanophotonics, vol. 8, no. 9, pp. 1477–1483, 2019.

[105] R. Zhou, X. Chen, Y. Xia, M. Chen, Y. Zhang, Q. Li, D. Zhen,
and S. Fang, “Research on the application of liquid-liquid
extraction-gas chromatography-mass spectrometry (lle-gc-ms)
and headspace-gas chromatography-ion mobility spectrometry
(hs-gc-ims) in distinguishing the baiyunbian aged liquors,” In-
ternational Journal of Food Engineering, vol. 17, no. 2, pp. 83–96,
2020.

[106] E. Schievano, M. Sbrizza, V. Zuccato, L. Piana, and M. Tessari,
“Nmr carbohydrate profile in tracing acacia honey authenticity,”
Food chemistry, vol. 309, p. 125788, 2020.

[107] D. Suhandy and M. Yulia, “The use of uv spectroscopy and
simca for the authentication of indonesian honeys according to
botanical, entomological and geographical origins,” Molecules,
vol. 26, no. 4, p. 915, 2021.

[108] H. Li, X. Ming, Z. Liu, L. Xu, D. Xu, L. Hu, H. Mo, and X. Zhou,
“Accelerating vinegar aging by combination of ultrasonic and
magnetic field assistance,” Ultrasonics Sonochemistry, vol. 78, p.
105708, 2021.

[109] V. Z. Petukhova, A. N. Young, J. Wang, M. Wang, A. Ladanyi,
R. Kothari, J. E. Burdette, and L. M. Sanchez, “Whole cell maldi
fingerprinting is a robust tool for differential profiling of two-
component mammalian cell mixtures,” Journal of the American
Society for Mass Spectrometry, vol. 30, no. 2, pp. 344–354, 2018.

[110] C. Llorente-Barroso, M. Sánchez-Valle, and M. Viñarás-Abad,
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