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ABSTRACT

Users may face challenges while designing graphical user
interfaces, due to a lack of relevant experience and guidance.
This paper aims to investigate the issues that users with no
experience face during the design process, and how to resolve
them. To this end, we conducted semi-structured interviews,
based on which we built a GUI prototyping assistance tool
called GUIComp. This tool can be connected to GUI design
software as an extension, and it provides real-time, multi-
faceted feedback on a user’s current design. Additionally, we
conducted two user studies, in which we asked participants to
create mobile GUIs with or without GUIComp, and requested
online workers to assess the created GUIs. The experimental
results show that GUIComp facilitated iterative design and the
participants with GUIComp had better a user experience and
produced more acceptable designs than those who did not.
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INTRODUCTION

Different people may use contrasting criteria when evaluating
designs, which makes design tasks challenging. One suggested
approach to effectively produce acceptable designs is to per-
form iterations among design stages [48]: produce many share-
able design alternatives [16, 34], compare the alternatives [68],
and evaluate how general users feel while employing the de-
signs (e.g., attention [71]). Iterative design also helps people
improve their design skills for quickly prototyping alternatives
and allows training time with many design trials to achieve
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the desired goals (e.g., simplicity, theme expressions, visual
aesthetics, and creativity).

Though performing iterative design is effective, doing so may
not be easy for novices. By novices, we refer to people who
have difficulty in performing the iterative design, have little
confidence in making design decisions, and follow “trial and
error” as their design strategy [2] due to lack of or little design
experience. Examples include students who need to produce
designs for a class or developers who need to not only program,
but also design Graphical User Interfaces (GUIs) for the pro-
gram (e.g., freelance or independent app developers [20]). We
conjecture that they encounter obstacles whenever they iterate
the design stages. For example, beginning with a blank canvas
in the initial prototyping stage can often be overwhelming for
the novices due to the difficulty in conceptualizing designs and
harmonizing the concepts within the given design constraints
(e.g., layouts or color themes) [11]. Novices are likely to make
mistakes through design iterations, a few of which may result
in the end in design failure. Generally speaking, it is hard
for novices to recognize mistakes in advance. As such, there
is a need for an end-to-end system that can assist novices by
lowering the barriers in the design process.

In this work, we aim to design a tool for assisting novices.
To achieve this goal, we conducted semi-structured, in-depth
interviews with 16 participants to understand the difficulties
of mobile GUI design. Based on the difficulties observed
during the interviews, we designed a tool, GUICompanion
(GUIComp) by integrating three different types of feedback
mechanisms: recommendation, evaluation, and attention. We
designed GUIComp as a browser add-on, so that it can be
easily linked to existing GUI prototyping tools. In our exper-
iment, we linked GUIComp with a base tool, called Kakao
Oven [30] and asked 30 participants to design GUIs for user
profile input and a list of products with either GUIComp or
the base tool. Then we asked 47 Amazon Mechanical Turk
(AMT) workers to assess the resulting designs. The results
indicate that the proposed tool helped users who lacked experi-
ence in mobile GUI design to easily begin and develop a GUI
design within a short period. With GUIComp, the users were
able to efficiently start their designing with examples, check
whether their design seemed acceptable, and produced it as
they intended guided by visual complexity scores. The results
also show that mobile GUIs produced with GUIComp were
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more acceptable designs to general users than those produced
with the base tool. The participants reported that designing
mobile GUIs with GUIComp was more enjoyable, satisfactory,
and affordable than with the base tool. We believe that our
approach to providing real-time multi-faceted feedback can be
applicable to non-mobile GUI design tasks (e.g., web design).

The contributions of this work include the 1) characteriza-
tion of the difficulties that users encounter while designing
GUIs by conducting semi-structured interviews, 2) design and
evaluation of GUIComp, an end-to-end system that integrates
multi-faceted feedback for mobile GUI design and facilitates
an iterative design process, and 3) lessons learned from the
study and design guidelines for GUI prototyping assistance.

RELATED WORK

GUI Prototyping Tools

Many tools have been developed for GUI prototyping. Adobe
Photoshop and Illustrator are popular among designers for
providing many toolboxes for drawing various simple and
complex shapes [55]. Several tools have been proposed to
allow easy prototyping by reducing the time for interaction and
adding animation. Adobe XD [1], InVision [28], Sketch [64],
and Principle [56] are tools in this category. Other tools have
also been proposed to allow more rapid prototyping, such
as UXPin [70], Proto.io [57], and Axure [4], all of which
are equipped with a large number of ready-made elements.
Despite the helpfulness of these tools in rapid prototyping, they
may not be sufficient for users, because they do not provide
timely feedback on the users’ designs to improve quality.

Approaches for Assisting GUI Prototyping

Many approaches exist for assisting GUI prototyping, and
they can be categorized into three groups. The first approach
allows users to browse examples. Existing studies report that
browsing examples inspires designers and leads to alterna-
tive designs [23, 17, 38]. For example, “d.tour” proposed
by Ritchie et al. [62] allows users to search for examples by
using user-provided keywords. The second approach enables
users to interactively explore, extract, and use specific design
elements from the examples. The extracted elements can be di-
rectly used as a template or building block in prototyping. Tsai
and Chen’s framework [69] is an early system for supporting
template-based mobile user interface design. However, in this
approach, users are limited in terms of which elements they
can extract, such as structures, layouts, and styles. Rewire [65]
automatically converts a UI screenshot to a vector represen-
tation of design elements, which users can import into their
graphic editing tools and revise for their own purposes. The
third approach aims to partially or fully automate the design
stages using computational methods. O’Donovan et al. [50,
51] develop DesignScape which provides users with various
layout suggestions for refinement and brainstorming. Todi
et al. [66, 67] propose an approach that produces familiar
designs by restructuring existing layouts and an interactive
layout sketching tool, which offers real-time design optimiza-
tion with suggestions of local and global changes to improve
the usability and aesthetics. In contrast, ReDraw [43] and
pix2code [5] are designed to produce a code, which can be

executed to create an application, generated by a convolutional
neural network model based on a sample UI image. Moran et
al. [44] propose an approach that automatically checks whether
the users’ design implementation follows a design guideline
provided as an image. Despite their usefulness, automated
approaches have several weaknesses. First, users are often
excluded from the automatic design recommendation process,
except for the choice of its input (e.g., an image of an example
UD). In addition, an automated approach does not guarantee
the high quality of its output; the quality is often delegated
to users. Automated methods can also prevent users from
freely envisioning creative designs constrained by their out-
put examples, as reported in previous studies [52, 50]. These
weaknesses can be overcome by supporting users to lead the
design process, but rare studies exist on how to support. We
investigate how people can lead design efforts, assisted by the
machine acting as a smart companion during the process.

Metrics for Measuring Visual Complexity

Metrics for evaluating web pages and mobile GUIs [29, 59, 33,
54] already exist. Web page evaluation metrics focus on the
visual complexity of websites with individual and numeric fac-
tors (e.g., word count or graphics count [29]), whereas those
for mobile GUIs concern detailed elements that contribute
to the overall visual complexity of designs, such as words,
color, image counts and sizes, symmetry, balance [29, 59], and
layouts [33]. There are other approaches for evaluating visual
complexity of mobile GUIs [61, 60, 41, 27]. Miniukovich and
Angeli [41] propose metrics for measuring visual impressions
of mobile GUIs and demonstrated that their model can explain
40% of the variation of subjective visual complexity scores.
Their experiment also revealed that dominant colors and the
symmetry of Uls are correlated with aesthetics, while color
depth information is more correlated with visual complexity.
The model is further extended to measure the visual complex-
ity of desktop GUIs [42]. Riegler and Holzmann [61] propose
eight visual complexity metrics for evaluating mobile GUIs.
Their metrics evaluate the quality of the number of UI ele-
ments, misalignment, imbalance, density, element smallness,
inconsistency, color, and typographic complexity. The met-
rics were mathematically formulated and evaluated through
a user study. In this work, we use Riegler and Holzmann’s
metrics [61], because they can present visual complexity in
numeric values in real-time.

IDENTIFYING DIFFICULTIES ENCOUNTERED DURING

GUI PROTOTYPING

We conducted semi-structured interviews to understand the
difficulties users face during GUI prototyping. We chose the
mobile GUI domain, because mobile GUI design is a difficult
design task due to innate characteristics, such as small screens
with touch-based input [32, 74, 15, 72, 42].

Participants: We recruited 16 participants (3 women, avg.
age: 23.56) at a university in South Korea, who were interested
in designing GUIs for mobile applications. We recruited the
novices only by noting in the advertisement that individuals
with any previous GUI design experience were not eligible to
participate. The recruited participants were all undergraduate
students with various engineering majors, namely, electrical,



computer, mechanical, and biomedical engineering. No partic-
ipants reported any experience with designing mobile GUISs.

Procedure: As the participants entered the experimental
room located in a university building, they were first asked
to fill out a demographic questionnaire that sought informa-
tion about their GUI design experience. Each participant was
then given a computer (Intel i7 and 16GB RAM with a 2560
% 1440 resolution, 27-inch monitor) that had a GUI design
tool (Kakao Oven [30]). We chose Kakao Oven as the GUI
prototype software for three reasons. First, we looked for a de-
sign tool for the novices that provided pre-defined icons (e.g.,
pins) and design components (e.g., buttons), which would
prevent the additional difficulty of making the components
from scratch during the design. Second, we wanted a tool with
the description and instructions in Korean so that participants
could easily learn how to use it. Third, we sought a tool that
was similar to other popular tools used outside South Korea
so that the study’s findings could be generalized to other tools
(e.g., Sketch [64], UXPin [70]). As Kakao Oven fit the cri-
teria well among the many alternatives available, we chose
to use it for our study. Figure 1 A is a screenshot of Kakao
Oven, presenting an example design for shoe sales. The Can-
vas panel (A2) indicates the area where the users create GUI
designs. The Element panel (A3) includes various pre-built
design elements (e.g., text, button, and tooltip) users can easily
customize and apply to their design on the Canvas panel. We
used an eye-tracker (Eyelink 1000+, sampling rate up to 2kHz)
to analyze users’ behavior.

The participants were given as much time as they needed to
become familiar with the tool during the practice session. The
supervising researcher also answered any questions they had
about the tool during this session; subsequently, we conducted
the eye-tracker calibration. Next, we introduced the task that
the participants had to perform, which was to create a GUI
for an online shopping mall application that lists product in-
formation along with product images. Note that we did not
impose detailed or strict design requirements, such as the color
theme or product domain. Accordingly, we proposed an open-
ended task to investigate the obstacles encountered by the
users while they planned a design and building a GUI from
scratch using the given tool. The resulting list of identified
obstacles served as a guide in deriving the design requirements
for the proposed design assistant tool. The task session for
each participant lasted about an hour, and the participants
were filmed during the session. After completing the task,
each participant watched the recorded video along with the
researcher and discussed the challenges that the participant
encountered during the GUI design process. We transcribed
the audio conversations from these discussions.

Identifying Difficulties Encountered by Participants

We coded the transcribed audio conversations using the
grounded theory approach [45], to identify roadblocks en-
countered by participants [37]. First, two of the authors of
this paper individually coded the reports on the encountered
difficulties and then, reviewed and discussed the collected
codes to identify common themes. Afterward, we were able
to group the participants’ difficulties into three distinct cate-

gories: (1) choosing the design direction, (2) measuring the
design quality, and (3) determining where the viewer’s atten-
tion would fall. After identifying these categories, we coded
each participant’s response relating to the difficulties as either
“0” or “1” for each category. Only one category was assigned
to each difficulty (for example, a difficulty could be coded as
[0,0,1]). Finally, we collected and compared the results. When
there were disagreements, the coders resolved them through
a discussion. If the coders did not reach agreement, another
author of this work resolved the disagreement. The inter-coder
agreement level was 85% as computed by the Pearson correla-
tion coefficient. Based on the observations, we characterized
and illustrated the three main difficulties that users may face
during GUI prototyping.

D1: OK, how do I start?: One common observation was
that the participants initially struggled to determine how to go
about the process. They often began the task by creating a few
GUI elements (e.g., text, buttons, and images) by dragging and
dropping from the element panel to the canvas area. However,
soon after, the participants deleted their created elements and
began looking for examples online. This series of actions
demonstrated that the participants encountered difficulties in
the initial stages. Twelve participants reported that they could
not easily conceptualize their prototyping direction [49] and
sought examples for inspiration [9, 23, 36, 65] and quality
comparison [68]. Eight participants reported that they found
it difficult to start designing GUIs without concrete examples.
Twelve participants commented that they needed a template
that provided a skeleton layout with areas where elements
could be replaced based on the user’s judgment.

D2: Is my design OK?: The second difficulty was that they
were uncertain whether they were making good or bad design
choices. One participant reported facing difficulty in deciding
the optimal size of the elements (e.g., icons, images, and but-
tons) for the application users. Eight participants mentioned
that it was a challenge to choose colors that would be aestheti-
cally pleasing to potential customers. During the task session,
one participant looked online for GUI evaluation methods
or guidelines, although the returned results were not helpful;
the participant reported two reasons for this: the searched
guidelines were often too abstract (e.g., “use conventional
elements”) or the advice was difficult to apply to her current
design context (e.g., regarding the instruction to “use about
44 squared pixels for a touch interface,” she did not have 44
squared pixels to allocate).

D3: Will users see what I want them to see?: The third
difficulty was related to determining where the viewers’ atten-
tion would fall in the process of modifying the design (D3).
Four participants stated that they had no clue how to deter-
mine which areas would be mostly viewed by users. Based
on our observation, this difficulty seemed to lead to frequent
changes in the position and size of the images. A participant
reported, “It was hard to guess which part the customer will
look for first, as all of the text and images are important, [
think.” Another participant stated that “I want to emphasize
selling points in my design, but I do not know which part is
most proper to be the point.” When we asked the participant



what made her think about this emphasis, she answered that
she had experience using an online shopping mall where im-
portant information, such as coupons or product prices were
not sufficiently evident to shoppers on a mobile screen.

Requirements of a Tool for Assisting GUI Prototyping
Based on the identified difficulties, we derived the require-
ments for a tool that can solve these problems while assisting
GUI prototyping:

R1: Provide examples to guide users in how to begin and
modify the design,

R2: Evaluate the current state of the design,

R3: Indicate the projected areas that users will see,

R4: Ensure R1-R3 on the most up-to-date design in progress,
R5: Ensure that R1-R3 are met non-intrusively, and

R6: Meet R1-R3 using an add-on that can be attached to a
web-based prototyping tool.

We found that providing timely feedback is essential to solve
problems. Feedback can be considered one of the most power-
ful instruments for helping users achieve a desired goal [22],
in particular for creative work [63]. Feedback given during
an early design stage can allow users to iteratively improve
the quality of the design [17, 34]. Thus, we derived three
requirements (R1, R2, R3) that aim to provide relevant exam-
ples (R1), evaluation of the design (R2), and areas of interest
for target users (R3). In addition to the three requirements
directly determined from the three difficulties (D1, D2, and
D3), we included another three requirements. We added R4,
because it is critical for users to receive prompt feedback on
their current designs, as early and timely feedback could im-
prove creative work [35, 34]. R4 also implies that the design
process should not involve an offline computation so that the
iterative processes of designing, reviewing, and revisiting can
be efficiently supported [7]. In addition, we included RS, be-
cause we did not want users to be interrupted by such feedback
while making their design choices. RS implies the need for
a dedicated space where feedback can be visually displayed.
The purpose of R6 is the easy installation and compatibility of
GUIComp. Following these requirements, we designed a tool
for assisting GUI designers, as discussed in the next section.

GUICOMP: AN ADD-ON FOR GUI DESIGN GUIDANCE

We introduce a web-based add-on tool, called GUICompanion
(GUIComp), which provides prompt feedback on GUI designs.
GUIComp is designed as an add-on for mobile GUI design
applications so that it can be easily adapted to any other tool
with proper configuration of client-server communication.

Tool Overview

GUIComp consists of three panels (the evaluation, recommen-
dation, and attention panels), where each panel fulfills the three
requirements (i.e., R1-R3) described in the previous section.
We implemented the tool in the Chrome browser as an exten-
sion [19] that uses responsive web technologies to capture and
process information in real time (R4), and provides feedback

in a separate window outside the user’s design canvas (RS5).
As an extension, GUIComp can be linked to any online GUI
prototyping tool (R6). For demonstration and evaluation pur-
poses, we linked GUIComp to Kakao Oven [30], a base GUI
prototype tool. GUIComp captures the most up-to-date design
states by using open source libraries (i.e., MutationObserver),
generates feedback (i.e., visual complexity evaluation), rec-
ommendation templates, and attention heatmaps based on the
states, and presents them on the three panels (Figure 1 B-D).
In the following sections, we describe how we captured the
users’ design states, parsed the web elements, and extracted
the design elements (e.g., element types, dimensions, and color
maps) and we subsequently introduce the panels, metrics, and
datasets used for GUIComp.

Capturing and Processing Users’ Design on Canvas
GUIComp captures user design states and returns two differ-
ent outputs, HTML elements and images. Then, using the
two outputs as inputs, GUIComp generates three different
types of feedback (examples, evaluation scores, and attention
heatmaps). When there is an interaction on the user canvas
(Figure 1 A2), an internal HTML file for describing the user
canvas is also updated. Once an update is detected by us-
ing MutationObserver, a JavaScript API, GUIComp converts
the HTML file into a json file using the html2json [25] and
html2canvas [24] libraries. GUIComp saves the json file tem-
porarily in the Chrome extension’s local storage to prevent
Cross-site Request Forgery (CSRF) vulnerabilities. Then,
GUIComp sends the json file to the processing server along
with an image of the GUI on the canvas.

The processing server extracts GUI components’ 1D, type
(e.g., button), and attributes (e.g., color, width, and height)
from the json files and computes i) the dominant colors using
OpenCV [53] and ii) the visual complexity scores using the
equations proposed by Riegler and Holzmann [61], which are
described further in the Evaluation Panel section. GUIComp
also captures and stores the GUI image from the canvas; see
Figure 1 A2. The captured GUI image is used as an input for
the FCN-16 model, and the model provides an attention map
score as an output.

Recommendation Panel

Description of In-the-Wild Mobile GUI Data (RICO)

To create a pool for recommendation templates, we consid-
ered both the ERICA [13] and RICO datasets [12], but chose
to use RICO, as it includes one of the most extensive lists
of mobile application screenshots. The RICO dataset [12]
contains 72,219 mobile application GUI screenshots, meta-
data, and element hierarchy information from 9,700 Google
Play Store popular apps. The dataset also contains meta-data
of the applications, including the average rating, the number
of installs and downloads, and the category assigned for the
app marketplace. The average ratings and categories of the
apps are utilized for filtering examples in Figure 1 (C). We
manually reviewed each screenshot and excluded those that
were inappropriate for use in GUIComp. Specifically, we
excluded screenshots of playing games, commercial advertise-
ments, pop-up menus, Android basic screens (e.g., the home
screen), data loading, password typing, black images, web
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views, and maps. In the end, we used 6683 screenshots from
2448 applications for this work.

Generating Recommendations from HTML

From the HTML file, the GUI structure information (e.g.,
TextView, EditText, Button, ImageView, and ImageButton) is
also extracted and used as an input for Stacked Autoencoder
(SAE) and the k-nearest neighbor algorithm, as suggested by
Deka et al. [12] for recommending examples that are similar
to the current GUI on the canvas. In our implementation, the
encoder has 13,500 (90x50x3) input (the image size is the
same ratio as the RICO dataset) and 64 output dimensions with
two hidden layers of 2048 dimensions and 256 dimensions
with the ReLU activation function [46]. The decoder has the
same but reversed architecture of the encoder. For training and
recommendation, we used the RICO dataset. We used 90%
of the data (6154 images) for training and kept the rest for
validation. We used the Adadelta optimizer and mean squared
error as the loss function. During the training, the validation
loss was stabilized at 4.96 after about 1900 epochs for 1.5h
with 512 batches. Using the trained model, we generated a 64-
dimensional representation per GUI screenshot for the RICO
dataset. The k-nearest neighbor algorithm was implemented
with the brute search algorithm and the cosine distance metric.

Presenting Similar and Random Examples

The recommendation panel provides users with example tem-
plates that are relevant to and inspirational for their design
goals. It is not feasible to present all examples from the RICO
dataset to users and ask them to explore the list without any
guidance. Furthermore, as users make progress in their de-
signs, they might need different examples for different pur-
poses. Thus, our goal was to provide a list of the most relevant

examples at the moment based on the current state of the de-
sign. To achieve this goal, we computed similarity scores
between the user’s design and examples so that we could rank
the examples in the order of similarity.

In addition to similar examples, we decided to present “random
(four images)” examples for two reasons. First, giving random
examples increases diversity in design choices, as the standard
affinity algorithm can generate recommendation lists that are
similar [26]. Second, users can rethink the choices they made
(e.g., the layout). By viewing intriguing alternatives, users
may have a chance to think outside the box. To distinguish
random examples from recommended examples, we show a
visual mark (@), as shown in Figure 1 C (bottom). When there
is no component on the user canvas (e.g., at the beginning),
the panel is populated with random examples.

We speculated that users might want to “keep” some tem-
plates while changing others as they make progress. Thus,
we allowed users to pin examples so that they maintain the
selected examples in the list; they can also unpin the examples
(Figure 1 PIN #). The panel also lists dominant colors in
their color palettes (e.g., Figure 1 Color Palette  IIEE"IN)
generated from the OpenCV library. When a user hovers over
a color in the palette, the RGB information of the color is
shown to help users refer to and learn the combinations of
colors in the examples. When a user clicks on an example
template, the user canvas is cleared and then elements of the
clicked template populate the user canvas in the same lay-
out and alignment as shown in the template. To allow this
automated element-populating function, we first mapped the
information of the RICO leaf-level nodes (e.g., X, y, width,
height, and type) to that of the Kakao Oven elements (Figure 1



A3), and computed the ratio of RICO’s nodes to screen width
and height and Oven’s elements to the canvas width and height.
Then, the drag—mock library [18] updates the HTML code to
indicate that new elements were added. Note that users can
recover previous designs by using a revert function provided
by the base tool.

Attention Panel

To visually show how much attention will be paid to elements
on a GUI design (R3), we incorporated Bylinskii et al.’s at-
tention model [8]. We feed the captured image from the user
design on the canvas into the attention model (FCN-16) [8] that
has been pre-trained with a graphics design importance (GDI)
dataset [50] to produce a heatmap with pixel values ranging
from O to 255. Figure 1 D shows an attention heatmap with
the given GUI on the canvas in Figure 1 A2. The color map
used in the heatmap linearly ranges over blue-green-yellow-
red, where the red indicates the areas that will receive the
most attention. The more intense the red on an element on
the heatmap, the higher the importance of the element in the
attention map. Guided by the heatmap, users can expect where
viewers will direct their attention. Based on the information,
users can revise the design for optimal guidance. With the
attention map, users can balance the expected audience’s atten-
tion by revising the original design. For example, when a text
field unintentionally receives too much attention, a user may
change the position or size of the text to redirect the audience’s
attention to more important areas.

Evaluation Panel

Generating Visual Complexity Metrics

To provide feedback on GUI quality (R2), we incorporated
visual complexity metrics. We also expected that, by using
the metrics as evaluation rubrics, users could easily discern
possible issues in their current design [73]. A review of pre-
vious studies that involved experimental evaluation enabled
us to find two candidate metrics [61, 42]. Of the two metrics,
we chose the one by Riegler et al. [61] because it enables real-
time evaluation (R4) and allows for an easy-to-understand nu-
merical result presentation. From the authors’ original seven
metrics, we excluded two: the number of Ul elements and
inconsistency. We omitted the former because the absolute
number of Ul elements does not reflect the quality of a design,
given that the number varies depending on the design goal. We
eliminated inconsistency because it applies only when a design
has more than one GUI page. We also modified the original
metric names into more intuitive ones to help users understand
the terms. Specifically, we changed imbalance to element bal-
ance, misalignment to alignment, color complexity to color
unity, typographic complexity to font size and type unity,
and element smallness to element size. We did not change
the term density. For metrics that feature O as the best score
(i.e., element balance, alignment, color utility, and font size
and type unity), we reversed the score range from 1 to 0 to O
to 1 so that 1 became the best score. We did not convert the
scores for element size and density because the midpoint (i.e.,
0.5) is considered the best score for the metrics [61]. These
metrics were also used as rubrics for the evaluation by the
online workers. We describe the metrics in detail as follows:

Element Balance (best score: 1.0) refers to the overall sym-
metry, balanced element distribution (e.g., consistent space
between elements), and skewness of the elements. Alignment
(best score: 1.0) pertains to the checking of alignment among
elements. During computation, three vertical (left, middle, and
right) and three horizontal (top, middle, and horizon) imagi-
nary lines are drawn for each element to measure the score.
Color Unity (best score: 1.0) shows the color use based on
the ratio of dominant to non-dominant colors. Font Size and
Type Unity (best score: 1.0) investigates the consistency of
font sizes and types present in the text. Element size (best
score: 0.5) is intended to verify whether elements are exces-
sively small or large for mobile interfaces. Scores lower than
0.5 mean the elements are small, while scores higher than 0.5
imply the elements are large, on average. Density (best score:
0.5) computes how much space is occupied. Scores of less
than 0.5 translate into simplicity in design, whereas higher
scores imply over-populated designs.

Presenting Visual Complexity Scores with User Ratings.

To help users understand the strengths and weaknesses of
their current design compared to those in the RICO dataset
(R2) [21], the evaluation panel (Figure 1 B) presents six visual
complexity scores and one overall rating score for the user’s
current design. This panel uses six histograms, each of which
shows the distribution of examples in the RICO dataset with
its corresponding complexity score on a horizontal scale. The
vertical red bar on each scale shows how high or low the
corresponding visual complexity score of the user’s design is
compared to that of the examples. For instance, the example
design in the user canvas (Figure 1 A2) can be evaluated as a
high-quality design based on the positions of the red bars over
the distributions in each evaluation dimension (Figure 1 B).

To support R4, GUIComp computes new scores whenever a
user interaction occurs over the design canvas (A2). For exam-
ple, when a button element is dragged from the element panel
(A3) and dropped to the canvas (A2), the evaluation panel up-
dates with newly computed scores to present the effects of the
dropping of the button. Note that the current design’s scores
are marked with a thick, vertical, red bar in each histogram
(Figure 1 B). The scores of the recommended examples are
depicted with black bars when a user hovers over an example
in the recommendation panel.

Implementation Notes

We used two servers: one (Intel Xeon E5-2630, 2.40GHz,
128GB RAM) for processing the captured user interaction and
the other (Intel Xeon E5-2630, 2.20GHz, 128GB RAM, 2 x
Tesla P100-PCle-12GB) for model training and prediction.
GUIComp uses several web development libraries, including
Django [14], Keras [31] D3.js [10], and Bootstrap [6]. Note
that in the performance experiment, when a user interaction
happens on the base tool’s canvas, it takes 725, 885, and
750 ms for each panel to produce feedback using the data
processing server. We also logged all user interactions, GUI
states, and attributes for qualitative analysis.



USER STUDY DESIGN

To evaluate GUIComp, we conducted a user study, in which 30
participants were asked to create two GUI designs: one with
restrictions and one without. Then we presented the designs
to online workers to evaluate the quality of the designs. This
evaluation was guided by three primary research questions:

RQ1: Does GUIComp help users make better designs accord-
ing to general users than Kakao Oven alone?

RQ2: Does GUIComp provide users with a more fun, fulfill-
ing, and satisfactory experience?

RQ3: Do users perform iterative design process to overcome
the difficulties during prototyping?

Participants, Procedure, Apparatus, and Tasks

We recruited 30 participants with an advertisement at a univer-
sity according to the definition of the novices in the introduc-
tion section. As participants entered the experiment room, they
were asked to fill out a form on demographic and background
information, including name, age, gender, major, prototyping,
and development experience and time. Then, the participants
were randomly assigned to either the Control Group (CG) or
the Experiment Group (EG). The CG participants were al-
lowed to use only a base GUI prototyping tool, called Kakao
Oven (Figure 1 A only), whereas the EG participants were
given the proposed tool and the base tool (Figure 1 A-D). We
used Kakao Oven for the same reason as in the previous par-
ticipatory study. We also concerned that if we used a different
tool as the basis and found strange or disappointing results, we
would not know if those results were due to an unsuccessful
design or simply to some un-analyzed differences between the
two tools. The experiment was a between-subject study to
minimize learning effects and was carried out with a computer
(Intel 17, 3.40GHz, 16GB RAM, 2560x1440 27-inch monitor).

At the beginning, the experimenters explained the purposes
and goals of the experiment to both groups for 5 minutes. Then
the participants in both groups watched the explanatory video
for 5 minutes (using Kakao Oven) or 15 minutes (Kakao Oven
and GUIComp, including the visual metrics explanation). We
also provided concise descriptions of the visual metrics in a
popup window, which the participants could mouse over to
read during the study. The participants were allowed as much
time as possible to familiarize themselves with the tool as-
signed to them, and explore the tool’s features. In addition, we
told participants that 10% of them would receive an incentive
(US$10), in addition to the base payment (US$20) based on
the perceived quality scores rated afterward by online workers.
Finally, the study began after the experimenters calibrated the
eye-tracker (Eyelink 1000+, sampling rate up to 2 kHz) for
the gaze transition analysis.

During the experiment, we gave the participants two tasks: a
situation with design restrictions given by clients (e.g., embed-
ding brands [72]) and one without any restrictions. The two
tasks we used were a user profile interface with restrictions
(T1) and an item-listing interface without any restrictions (T2).
We chose the two interfaces as the tasks for users with little
design experience, because we thought that 1) the difficulty

level was appropriate, as the basic design components are
provided by Kakao Oven, such as icons and buttons, and 2)
the interfaces are commonly requested, given that many apps
require input of user information and show items in a listing
interface, regardless of the app category. Inspired by Lee et
al.’s persona-based web page design [38], we used in T1 a
persona-based GUI design with detailed restrictions. There
were no other restrictions, which means the participants were
allowed to customize their Uls as much as they desired in
order to win the incentive.

Next, we describe the personal-based task used in the exper-
iment as follows: A user’s name is Elaine (email address:
elaine @gmail.com). Elaine has 12 notifications. There is one
shipping item and two items in the shopping basket. Elaine left
31 reviews. Goal: Design a profile user interface for Elaine.
Tasks and restrictions: 1) Your GUI should include basic in-
formation about Elaine. 2) You can add detailed information
(e.g., order list, delivery tracking, cancellation returns, dis-
count coupon, Service center, profile management). 3) Use
the headings, text, shape, button, and pagination components
of the given tool in your basic design layout. 4) Enter textual
information about Elaine. 5) Choose colors for each compo-
nent (optional). 6) Choose the font and font size for each text
component (optional).

After completing the tasks, the participants responded to an
exit survey about usability and user experience with GUIComp
(RQ?2), with the survey comprising items on efficiency, ful-
fillment, effectiveness, ease of use, ease of learning, user-
friendliness, consistency, fun, and satisfaction [40, 3]. These
items were rated by the participants on a 1-10 scale (1: “highly
disagree," 10: “highly agree") for satisfaction scores, and on
a seven-point Likert scale (1: “highly disagree," 7: “highly
agree") for the other scores. The users also provided prefer-
ence scores for each feedback panel (1: “least preferred," 7:
“most preferred").

Overall, we recruited 32 participants, but two could not com-
plete the experiment due to sudden system failures. Thus, 30
participants remained (18 men and 12 women, avg. age: 22.4,
all from engineering schools, 15 users/group) and they had
little or no experience (i.e., novices) but were interested in
GUI design (less than a month: 6 participants, 1-3 months: 1,
3-6 months: 1, no experience: 22). 4 participants experienced
a prototyping tool as their personal hobby (2: Kakao Oven,
2: Adobe Photoshop). None of the other participants had
previous prototyping tool experience. We excluded the eye
tracking data for 6 participants in the EG, as the data did not
contain full prototyping processes due to a malfunction. Thus,
we used 18 sets of eye tracker data (9 participants x 2 tasks)
in our eye tracking-based analysis. We analyzed EG groups’
gaze data only, because we are interested in how GUIComp
helps users (RQ1-RQ3).

EXPERIMENT RESULTS, ANALYSIS, AND IMPLICATIONS
Here, we report our evaluation approach with online workers.
As the goal of GUIComp is to help users produce designs that
are acceptable to general users, such relative acceptance levels
can be measured by the scores given by online workers, who
can be regarded as general mobile GUI users.
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Figure 2. The online workers’ ratings of the participants’ designs (left) and exit survey results (right). The dot and the whisker represent the mean and

the 95% confidence interval, respectively.

We evaluated the designs in two sessions. In Session 1, we
asked 26 MTurk workers to evaluate the perceived design qual-
ity on a 0-10 scale. No rubric was provided in Session 1 to
collect general users’ subjective assessment scores. In Session
2, we asked 21 other MTurk workers to evaluate the designs
with a rubric, which were the evaluation metrics (Figure 1 B-
element balance, alignment, color unity, font and element size,
and density), as the assessment criteria. We gave the work-
ers the rubric to provide minimum guidance for preventing
inconsistent and subjective evaluation [73]. We also provided
detailed descriptions for each metric to help the workers under-
stand and use the metrics for evaluation. We believe that using
the rubric was appropriate for guiding the evaluation, because
it includes the indexes for visual complexity (e.g., color, size,
density, and alignment), which affect the overall quality of
the GUI designs [15, 72, 42]. Next, we present the evaluation
results using the Welch’s t-test and the Kruskal-Wallis test,
due to unequal variance in the data.

GUIComp Users Produce Designs Acceptable to General

Users (RQ1)

In this section, we present statistical test results for the eval-
uation scores. In doing so, we merged the assessment scores
of both tasks in each session, and ran Welch’s t-tests to see
whether GUIComp was effective regardless of the task type.
Note that we report the results with 95% confidence interval
plots, as shown in Figure 2, where the dot and the whisker
represent the mean and the 95% confidence intervals, respec-
tively. Figure 2 (left, top row, “Perceived Qual.") indicates
that the GUIs produced with GUIComp were considered more
acceptable designs (i.e., higher scores) by general users than
those produced with Kakao Oven (¢[54.71]=3.24, p =0.002,
Cohen’s d=0.84). We observe the same result for Session 2 re-
sults (Figure 2, left, second row, “Eval. w/ Rubric"), where the
GUIs were evaluated with the rubric (¢[47.11]=4.24, p <0.001,
Cohen’s d=1.09). However there is no statistically significant
difference in the time spent performing the design tasks in the
two sessions (¢[50.00]=1.39, p =0.17). Overall, the results
indicate that using GUIComp helps people, especially those
who are in the beginner stage of designing GUIs or have never
designed GUIs, produce designs acceptable to the general
users, without spending any additional time on the designs.

Using GUIComp Is Enjoyable and Satisfactory (RQ2)
Figure 2 (right) presents the exit survey results: The par-
ticipants who used GUIComp felt that using the tool was

more efficient (¢1[26.56]=3.19, p=0.003, Cohen’s d=1.16)
and effective (1[26.08]=2.36, p=0.026, Cohen’s d=0.86) in
GUI prototyping than those who did not use it. Participants
who used GUIComp while prototyping also had more fun
(1[20.88]=2.72, p=0.013, Cohen’s d=0.99), and felt more com-
fortable (1[22.45]=2.2, p=0.038, Cohen’s d=0.8) and fulfilled
(1[18.8]=2.56, p=0.019, Cohen’s d=0.93), than those who did
not use the tool. Finally, participants who used GUIComp
were also statistically significantly more satisfied with the
tool (1[57.96]=3.39, p=0.0013, Cohen’s d=0.87) than those
who did not use GUIComp.

In the post-experiment interviews, we observed multiple rea-
sons for the positive results, including the feedback provided
in real-time, which enabled efficient iteration of their design
process with fun and high satisfaction. Participants who used
GUIComp liked the feedback feature and enjoyed the way
their multi-faceted feedback (R1) was dynamically updated
in real-time (R4) throughout the design process. Participant 2
(P2) said “It was nice to design with the data (i.e., feedback
provided by GUIComp), as up to now, my intuition has been
the only option that I can rely on during design.”

None of the participants reported any perceived clutter or
distraction caused by the real-time feedback from GUIComp
during the design process. Instead, the real-time feedback (R4)
was a feature of interest to some of the participants. P1 stated
that “I think it was fun seeing that feedback was changed in
real-time based on my interactions.” We do not see statistically
significant differences between the two tasks regarding how
user-friendly and how easy to use and learn the tools were.
The results show that GUIComp could be added to existing
design technologies without sacrificing their usability.

Users Employ Multi-faceted Feedback for Overcoming

Difficulties in the Iterative Design Process (RQ3)

In this section, we present the results of the eye-tracking data
analysis, where we find how GUIComp facilitated the iter-
ative designs, and how the users responded to the feedback
during their design iterations. Figure 3 presents the panel
gaze sequences of six participants who used GUIComp (three
sequences per task, which received the highest quality scores,
were chosen) based on participants’ eye movements between
panels. We also present example user designs to describe how
the designs evolved, based on the feedback from GUIComp.
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Figure 3. User gaze sequence data on the feedback panels.

Note that we denote eye gaze locations on the panels in four
different colors—gray for the base tool (Figure 1 A), red for the
evaluation panel (Figure 1 B), green for the recommendation
panel (Figure 1 C), and blue for the attention panel (Figure 1
D). In addition, we use the terms “prototyping”, “testing”, and
“refining” borrowed from Nielsen’s iterative design [48] to

capture distinctive design stages with GUIComp.

We also consider the intentions of each panel at a high level.
By prototyping, we mean the transitions between the base
tool and the recommendation panel (% ® ). By
testing, we mean the transitions from the base tool to the evalu-
ation or attention panel (= =l » @8 ). Lastly, we define
refining as the transitions from the evaluation or recommenda-
tion panel to the base tool ([l ® ms )

First, we observe frequent color changes in each user’s gaze
visualization in Figure 3, which mean that the participants
performed an iterative design process, forming many different
transition patterns. All six participants used the recommen-
dation panel (green) frequently in the early stage, and some
participants used the recommendation panel until the mid-
dle stages during their design, which is consistent with what
Kulkarni et al. [34] found in their study. Based on our reviews
on the interview transcripts, we conclude that participants
viewed examples of the recommendation panel for inspiration
at the beginning of the prototyping, and mainly for solving
DI1. P9 stated how useful GUIComp was during the early
design stage for solving D1: “this tool is useful, in particular
in the early design procedure with the abundant feedback and
references.” P2 described her design strategy for solving D1
during prototyping as follows: “I started with the recommen-
dation panel in the early stage to search as many templates as
possible so that I could work with many good options.” Other
participants, such as P9, also shared their experiences of using
examples for solving D1: “The recommendation panel was
useful early on... With the many references, I could decide
which layout to use and start with." We observe actual patterns
of this strategy in Figure 3 (e.g., P3_T1 and P6_T2 middle
green parts). When examples are used, users tend to gradually
build their design by parts, referring to the different parts in
the examples. This behavior is interesting, because we ex-
pected users to employ the design strategy of taking all the
elements of the best example in their opinion and submitting
their resulting design by slightly modifying the example.

We observe that participants tended to make more use of the

evaluation panel in the later design processes (e.g., Figure 3

P3_T1, red parts at the end). Participants’ gaze often moved

to the canvas to find an element to enhance the design quality

after viewing the evaluation panel. We speculate that partici-
pants wanted to confirm quality of their intermediate or final

design quality by using visual complexity scores (testing and

refining) in an effort to solve D2. This effort was illustrated

by P13, who said, “I consistently checked if the alignment is

correct, colors are properly used, and the element balance is

good. In this way, I have created a GUI that I like.” Other

participants, such as P14, expressed a similar opinion as P13:

“Mostly, I paid attention to increase the evaluation scores during
my prototyping and had a high quality design.”

During the prototyping, the participants monitored the atten-
tion information, to balance viewers’ focus to solve D3. P6
directly expressed her intention of using this view—“I can see
which parts will attract the viewers on which I could edit my
design.” Tt is of interest that P6 checked whether viewers’
attention would lie on the most important sales words in the
design (Figure 3 P6-T2 ‘50% OFF’), producing a high-quality
design. Although most participants enjoyed the attention view,
“I like the (attention) panel, because it is very intuitive and
easy to understand,” as P2 stated, one participant indicated a
concern that using this view may not always be easy, since it
often requires interpretations of the results.

To understand which type of feedback played a critical role
in improving the participants’ designs, we reviewed the user
preference average scores (recommendation: 5.0, evaluation:
4.93, attention: 5.53) [58]. We ran Kruskal-Wallis ANOVA
tests, which indicate that there is no significant difference in
user preference among the three types of feedback (p=0.60).
In terms of the time spent on each panel for reviewing feed-
back (avg. duration-recommendation: 168s, evaluation: 126s,
and attention: 27s), we find significant differences among the
panels (p=0.001, F=7.40), according to the ANOVA test. The
Tukey post-hoc analysis results indicate that users spent more
time reviewing the feedback from the recommendation and
evaluation panels than that from the attention panel. We do not
find any statistically significant difference in the eye-gazing
duration between the recommendation and evaluation panels.
To sum up, we think that all of the feedback in the panels con-
tributed to improving user satisfaction in using GUIComp. In
terms of contribution to improving designs, we conjecture that



evaluation and recommendation feedback could have played
more important roles, according to the time that users spent
reviewing and reflecting on the feedback for their designs.

LESSONS, LIMITATIONS, AND DISCUSSION
This section describes lessons we learned from this study and
discusses limitations of our work.

Provide Explanation for Feedback or Allow Users to In-
tervene in the Feedback Generation Process: We believe
design assistance tools can further support users by provid-
ing additional feedback for “why" (justified feedback [47])
to help users better understand the reason for the given feed-
back. In this study, participants requested justified feedback
in GUIComp when the feedback was not clear. For example,
a few participants often wanted to know exactly which areas
or elements contributed the most negatively to the evaluation
score. P6 struggled to find areas for improvement, and stated,
“I designed in a way to increase my alignment score, but the
score did not go up as I intended."” The same issue occurred
with the recommendations. When we asked how we could
improve GUIComp, PS5 commented, “There were many rec-
ommended examples, but I could not understand why some
examples were recommended to me." Users wanted to under-
stand the reasons for the scores and the recommendations.

One solution is to provide a relevant explanation for the feed-
back. For example, when a user does not understand a low
score in alignment, an assistance tool can point out the mis-
aligned elements, so users can take appropriate actions. An-
other solution is to include users in the automated process.
For example, users can be invited to intervene in the example
recommendation process. After viewing the initial sugges-
tions, users may provide feedback by setting constraints on
desired designs (e.g., background color) or by directly label-
ing selected examples as “good" or “bad." We can consider
providing more granular feedback using semantics of Uls [39],
by referring to what each visual element means and how it
is supposed to be used, in order to help users better interpret
the results. Future research may investigate how to make the
system’s feedback more interpretable and how to incorporate
users’ feedback in the system’s feedback.

Conflict between User Thought and Feedback: In this
study, we provided participants with three types of feedback.
The participants often struggled with feedback that was op-
posite to what they believed. In particular, some participants
were reluctant to accept numeric scores in the evaluation panel.
In the experiment, P14 intentionally changed the layout so that
some elements were overlapping. This action decreased the
evaluation scores. After the experiment, P14 stated, “Though
I saw my scores dropped as I made the element overlap, [...] 1
still think my (overlapping elements) design looks better than
others with high scores.” The strength of numeric scores is
the clear interpretability. However, when the scores do not
match what users believe, the scores may not be appreciated.
In addition, the evaluation scores, which do not reflect sub-
jective elements, layouts, or themes, may be disregarded. Fu-
ture research should investigate how to reconcile the potential
conflicts either by augmenting the numeric score with more

convincing, descriptive, textual feedback or by improving the
feedback using users’ input.

Automation and Feedback: As we discussed above, the par-
ticipants often demanded more explanations and explicit guid-
ance. In this study, we provided feedback in a non-intrusive
manner so that the users could be able to contemplate the feed-
back for themselves. In this way, we believe that users can lead
their design efforts using their creativity [52]. However, the
participants revealed that they would have appreciated some
automated correction of details, such as misalignment. Future
research should investigate the effects of such automated de-
signs or corrections on the users’ experience, and quality of
their work. For instance, an automated GUI and code genera-
tion technology from a GUI screenshot is one of the emerging
technologies in GUI prototyping, including pix2code [5], Re-
Draw [43], and DesignScape [50, 51]. However, other studies
report that auto-generation can take the imagination of de-
velopers out of the design process and remove opportunities
for learning how to improve designs [50, 52]. In addition,
there is a wide design space between automation and manual
design. Future studies should investigate how to integrate au-
tomated support, while facilitating user-driven, creative design
processes for GUIs.

Limitations and Future Work

As our goal was not ranking the features, we could not report
report superiority and interplay effects among the features in
this work. As our experiment was with the novices and Kakao
Oven, we could not tell the effectiveness of our approach with
experienced users and other baseline tools. We plan to conduct
an experiment for comparing and ranking the features and for
investigating the effect of our approach with more experienced
users and other tools.

CONCLUSION

We propose GUIComp, a feedback-based GUI prototyping
tool to assist users, based on semi-structured interviews to
identify the roadblocks that users face during the design pro-
cess. GUIComp provides three types of feedback (evaluation,
attention, and recommendation), which are dynamically up-
dated as users continuously make changes in their design. The
experimental results indicate that GUIComp allows users to
create more acceptable mobile GUI designs, while providing
a more fun, fulfilling, and satisfactory experience.
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