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THEBIGGERPICTURE Adoption of AI tools in practical settings, such as for research/clinical tasks, has been
hampered by a lack of transparency/interpretability of the models. After performing a review of different
types of AI explainability (XAI) methods developed to better understand the predictions made by a model,
we also develop a taxonomy to better classify the different approaches. We think that these XAI techniques
are not sufficient to enhance practical implementations and illustrate via an example how user-driven XAI can
be useful for different stakeholders in the healthcare domain. We identify and define three key personas
involved in healthcare—data scientists, clinical researchers, and clinicians—and present an overview of
the different approaches that can address their needs. The ultimate goal of adopting AI in medical practice
and patient care goes beyond explainability and will need the development of extra layers of security and
confidence, in particular regarding AI trustworthiness, as XAI transparent systems become prone to attacks
that may reveal confidential information, and AI fairness, as systems developed and tested in diverse envi-
ronments need to be expanded to real-world situations.

Mainstream: Data science output is well understood
and (nearly) universally adopted
SUMMARY

Rapid advances in artificial intelligence (AI) and availability of biological, medical, and healthcare data have
enabled the development of a wide variety of models. Significant success has been achieved in a wide range
of fields, such as genomics, protein folding, disease diagnosis, imaging, and clinical tasks. Although widely
used, the inherent opacity of deep AI models has brought criticism from the research field and little adoption
in clinical practice. Concurrently, there has been a significant amount of research focused on making such
methodsmore interpretable, reviewed here, but inherent critiques of such explainability in AI (XAI), its require-
ments, and concerns with fairness/robustness have hampered their real-world adoption. We here discuss
how user-driven XAI can be made more useful for different healthcare stakeholders through the definition
of three key personas—data scientists, clinical researchers, and clinicians—and present an overview of
how different XAI approaches can address their needs. For illustration, we alsowalk through several research
and clinical examples that take advantage of XAI open-source tools, including those that help enhance the
explanation of the results through visualization. This perspective thus aims to provide a guidance tool for
developing explainability solutions for healthcare by empowering both subject matter experts, providing
them with a survey of available tools, and explainability developers, by providing examples of how such
methods can influence in practice adoption of solutions.
INTRODUCTION

With the growing availability of machine learning algorithms and

data, there is a rising interest in adopting artificial intelligence (AI)
This is an open access article under the CC BY-N
in order to advance not only biological and clinical research but

also medical practice and patient care. Machine learning algo-

rithms have been applied to a diversity of biological and medical

problems1 like protein folding,2 genomics,3 drug discovery,4
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medical imaging,5 and clinical research in chronic diseases,

such as AIDS.6 Furthermore, large accessible databases,

including genomic data7,8 and electronic health records, such

as in Medical Information Mart for Intensive Care (MIMIC)-III,9

or that contain both genomic and clinical data, such as in UKBio-

bank,10 have opened avenues for active collaboration between

researchers in AI, medicine, life sciences, and healthcare appli-

cations, as shown by initiatives like Machine Learning for Health-

care (https://www.mlforhc.org/).

Despite its potential benefits, AI and particularly deep learning

lack the necessary transparency to generate trust and knowl-

edge. In medicine, although machine learning algorithms can

outperform human doctors in making diagnoses,3,11,12 it is diffi-

cult to understand how their decision is made,13 a critical ques-

tion for preventing harm in practical use. For example, amachine

learning model made diagnostic predictions of pneumonia by

learning the association between a type of X-ray machine and

the disease occurrence.14 Moreover, when using gene ex-

pression for patient diagnosis, the sample metadata can some-

times predict the outcome perfectly. For high-stakes fields, such

as clinical practice, usage of AI without addressing the short-

comings related to trust can often hinder the adoption of such

models in practice. Another cause for concern is the danger of

amplifying biases in patient sub-populations, given insufficient

training data for the group. For instance, one of the most predic-

tive variables for length of stay in a hospital is the postal code, in

which longer stays were correlated with relatively poor and pre-

dominantly African American neighborhoods.15 Also, partici-

pants in genomic studies or clinical trials are often not represen-

tative of populations who need treatments in terms of race,

gender, and ethnicity groups.16 Finally, explanations and a

deeper understanding of the nature of the predictions are neces-

sary because models often make decisions based on unreliable

signals from datasets. Tomitigate these issues, it is necessary to

either continuously inspect and improve models, build methods

that can be directly interpreted, or both.

Although some models are inherently ‘‘transparent’’ and pro-

vide users with the most important features relevant for a model

output, the display of such feature importance is not inherent to

deep neural networks. Furthermore, even when model interpre-

tation via feature importance is available at a global level, esti-

mating how the model behaves for an individual example is

non-trivial. For example, knowing the feature importance for a

random forest model is not sufficient for users to grasp what-if

scenarios at a particular example level, such as increasing/

decreasing feature values by a certain amount. Recently, a sig-

nificant amount of research has been focused on postulating

many so-called explainability methods for experts to probe

global and local explanations and understand why certain pre-

dictions aremade by trainedmachine learningmodels. Providing

the tools for interpretation of AI models and potentially

answering the ‘‘why’’ question by filling the explainability gap

have been identified to be of paramount importance.17

There has been significant research on alleviating these short-

comings by providing various methods to explain AI models, the

breadth of which enables choosing the one best fitting the

needs.18 However, despite such advances, many critiques stand

relative to the methods employed and, more crucially, the

explainable problem in AI they are trying to solve. For example,
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doubts have been raised relative to using attention maps as

proxies for feature importance.19,20 Even methods that may

otherwise appear grounded in theory and widely adopted,

such as SHAP,21 have also been criticized.22 Indeed, counter-ar-

guments exist that outright question the need for explainability,

such as when the methods are accurate enough.23 Also, there

have been concerns about the generation of misplaced trust

when using explanation techniques.24 One of the core chal-

lenges in addressing such critiques derives from a lack of a uni-

versally accepted definition of explainability. For example,

Hind25 argued that the term, explainability, itself is not well-

defined unless it is contextualized in a communication between

two parties, A and B, where party A provides justification for an

action or decision to party B. The more sufficient justifications

are provided, the more iterations happen between the two

parties, and the more trust and acceptance of the model are

built. Defining formally a valid and reliable human-to-human

explanation is in itself challenging, so defining a concrete sys-

tem-to-human explanation is a challenge beyond the realm of

AI expertise. Also, the explanations of decisions taken by hu-

mans are neither uniform nor consistent26 but derive from

different phenomena and contexts of a particular domain.

Hence, Hind25 argued in favor of generating explanations for

the end user in context and advocated for a persona-driven

design. Recent literature27–29 has further looked into the problem

of approaching explainability from an end user perspective,

recognizing the fact that explainability also involves a ‘‘for

whom’’ in addition to a ‘‘why’’ question. In particular, such end

users are usually classified into different personas, and tools

for explainability in artificial intelligence (XAI) are developed to

adapt the workflow of such personas toward more confident us-

age of underlying AI models.

From this perspective, we first provide a general overview of

the dimensions of explainability and, following,25 identify the

personas for healthcare and their unique needs. We employ

concrete real-world examples of XAI and connect how such ap-

plications were driven by the persona of interest. In the process,

we also provide a brief overview of potential pitfalls. Overall, we

aim to provide a guidance tool for developing explainability solu-

tions for healthcare by empowering both subject matter experts

with a survey of available tools and explainability developers with

examples of how such methods can influence adoption of solu-

tions in practice. This approach can readily be extended to the

life sciences and medical informatics, where such divisions

also exist.

RESULTS

The general dimensions of explainability
The biggest challenge to designing an XAI model is to under-

stand how a human might expect an explanation to be.29

Although there has been research on general metrics that mea-

sure some aspect of explainability,18 from a user point of view,

universally applicable metrics are difficult to obtain. One can

argue there are three major challenges: (1) the definition of ex-

plainability is not universal, pointing to the need for user-driven

XAI; (2) even when domain experts are involved, they often

may not agree, making it hard to define a formal metric; and (3)

given the previous two aspects, defining a global metric may

https://www.mlforhc.org/


Table 1. Summary of available open-source XAI tools

Toolkit

Data

Explanations

Directly

Interpretable

Self-

explaining

Local Post Hoc

Explanation

Global Post Hoc

Explanation

Explaina- bility

Metrics URL Links

AIX 360 X X X X X X http://aix360.mybluemix.net

Alibi X https://github.com/

SeldonIO/alibi

Skater X X X https://oracle.github.io/Skater/

H2O X X X https://github.com/

h2oai/mli-resources

InterpretML X X X https://github.com/

interpretml/interpret

EthicalML-XAI X https://github.com/

EthicalML/xai

DALEX X X https://modeloriented.

github.io/DALEX/

tf-explain X X https://github.com/

sicara/tf-explain

iNNvestigate X https://github.com/

albermax/innvestigate

modelStudio X X X X https://bit.ly/3uOnU5y

ELI5 X X X https://github.com/

TeamHG-Memex/eli5

Iml X X X https://bit.ly/3iBv8Vx

Coverage is shown along several explainability dimensions: (1) data explanations are provided through data distributions and enable case-based

reasoning; (2) directly interpretable refers to a model that inherently provides information about features driving predictions at both global and local

levels; (3) in contrast, self-explaining models provide local explanations but may not be globally interpretable; (4) local post hoc explainers can provide

explanations around particular data points for black-box models in a post hoc manner; (5) whereas global post hoc explainers provide the same at a

global/model level; and (6) explainability metrics cover several state of the art metrics to quantify the explainers/models around several dimensions of

explainability.
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not always be feasible. Therefore, wide ranges of XAI techniques

have been developed to cater to the diverse needs of explana-

tions in a variety of AI applications. Many generic XAI tools are

open-sourced and contain not only the best machine learning

tools but also the most used ones (see Table 1).

XAI techniques can be categorized broadly into four major

classifications: data/model, self-explanatory/post hoc, local/

global, and static/interactive (see Figure 1). For a detailed dis-

cussion of these different XAI techniques, see Arya

et al.,18,30,31 Arrieta et al.,18,30,31 and Linardatos et al.18,30,31

The first division separates whether the data or the model needs

to be explained, although different personas might require both.

Indeed, to understand data, it is important to have a case-based

reasoning approach to compare and place a given sample with

respect to other examples in the dataset. Thus, depending on

the needs and use case, model developers can only choose to

focus on features that can be explained and understood to

model the data distributions, potentially at the cost of perfor-

mance. One possibility is to apply a transformation to the fea-

tures to make them more explainable.

The second dichotomy is whether the goal is to build a

directly interpretable/self-explanatory model (see Table 1 for

definitions), something that is simple and easy to understand

by itself, or if we are looking for a post hoc explanation of a

difficult to explain black-box model.30 Classic approaches in

machine learning and AI, such as decision tree and rule-based

models, can directly develop interpretable models.31 They are
generally learned in a heuristic or greedy manner, but recent

advances in discrete optimization have led to new approaches

applied to large-scale interpretable models.39 In cases of

models that are not interpretable, such as deep neural net-

works or very large ensembles, a post hoc sort of explanation

needs to be performed, and there are various methods for do-

ing so.31 Depending on the problem at hand, directly interpret-

able approaches can often outperform black-box models.40

Although feature engineering and significant domain knowledge

are often needed to make such approaches practical, signifi-

cant research has expanded such methods to a wide range

of problems.41–44 Nevertheless, black-box models often

perform better45 and/or are more broadly applicable.46 The

post hoc explanations can be designed by modifying each indi-

vidual underlying AI algorithm, building surrogate models,38 or

visualizing a model’s behavior in a meaningful way.47 Alterna-

tively, generic post hoc XAI models have been developed to

provide explanations for any type of AI techniques.

The third division in the explainability taxonomy entails

whether we are looking for local or global explanations.18 A local

explanation happens at the individual sample level, whereas a

global explanation encompasses the entire model. A medical

professional society might want a description of the behavior

of the entire model, a global explanation, in order to inform

best practices for their membership. This can be performed

post hoc or with directly interpretable global explanations, or

possibly both. Conversely, a local explanation is desired in the
Patterns 3, May 13, 2022 3
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Figure 1. Taxonomy tree for explainability in AI models
To figure out the most appropriate explanation method, we propose a taxonomy of questions represented as a decision tree to help navigate the process. The
green leaf nodes represent algorithms that are in the current release of AI Explainability 360. Considering the data, different choices are possible relative to its
representation and understanding: data understanding based on features, in which case theory can yield disentangled representations, such as in Disentangled
Inferred Prior Variational AutoEncoders (DIP-VAEs)32; otherwise, a sample-based approach using ProtoDash33 is possible, which provides a way to do case-
based reasoning. If the goal is to explain models instead of data, then the next question is whether a local explanation for individual samples or a global
explanation for the entire model is needed. Following the global path, the next question is, Should it be a post hoc method or a self-explaining one? On the
self-explaining branch, TED (teaching explanations for decision making)34 is one option, or a global method, such as BRCG (Boolean rule sets with column gen-
eration).35 On themodel agnostic post hoc branch, again, explaining in terms of samples or features comes up. On the sample side, prototypes come up again, as
on the feature side choices among the contrast of explanations methods (CEMs),36 as well as popular algorithms, such as LIME37 or SHAP,21 are available. Finally
on the post hoc global side, surrogate models, such as ProfWeight, are available. On the model-specific branch, one has to choose between modifying models,
surrogate models, or simply visualizations. Going back up, aiming for global explanations for the entire model, then the question again is whether something post
hoc is needed or a directly interpretable model? A directly interpretable model could be a Boolean rule set, such as BRCG or GLRMs (generalized linear rule
models),38 can yield the answer.
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case of a patient who wants to know why the model has pre-

dicted that he/she has/may have cancer. Note that in the case

of a linear and locally consistent global model, the explanations

may be the same for both the global and local model; however,

for more complex local models, a local neighborhood may have

different features with different effects.

Finally, the fourth division type is static versus interactive ex-

planations, where, in the former case, the explanation is just

printed out and presented to the user, and, in the latter, the

output is interactive and lets the user query the results in

some sort of visual or conversational manner.30 Most of the ex-

isting technology and way of doing things has led to the static

form, but a slew of new ways to think about explanation has

produced software that, as people would do in a conversation,

explain in an interactive fashion by asking each other questions

and are able to dive into details in a conversational way or

following visual analytics.48,49

Most of the XAI techniques described so far are generic in na-

ture and typically aimed at a variety of datasets, such as gene

expression, text, tabular, images, and their applications. As

such, several tools have emerged with open-source codes
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covering the different categories of the XAI taxonomy we just

presented. A brief comparative summary of such freely available

XAI tools is provided in Table 1. For more in-depth analysis on

this topic please refer to Molnar.50

Ensuring accountability and transparency of XAImodels
One critical question that is often asked about any AI model in

life sciences or in healthcare before being deployed relates to

the robustness, accountability, and transparency of its pre-

dictions.51 The XAI models described so far mainly focus on

making AI models explainable17,52; although this could be satis-

factory for a research question when coupled to a meaningful

interpretation, it is just one component of the larger pipelines

and life cycles of the healthcare system. Therefore, model

explainability alone is not sufficient for ensuring overall

accountability and transparency53,54 nor does it entail overall

interpretability of the model results.54,55 In the healthcare

domain, other tools like datasheets, model cards, factsheets,

and documentations in addition to explanations generated

from XAI models often become useful for ensuring such overall

system transparency.56
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Toward user-centric explainability in health
Although XAI models aim to derive generic explanations for com-

plex AI techniques, there exist several challenges for the exten-

sion of their use.13,51,53 First, the term explanation itself has been

debated in the AI community recently to be more subjective and

vague, especially in healthcare and life sciences, where more

rational decision making/understanding is desired due to the

high-sensitivity/costs associated with each decision made. Sec-

ond, there is significant debate on the definitions of explainabil-

ity, the methods employed, and how such methods can be of

practical use. As shown in Doshi-Velez and Kim,57 there is no

benchmarking of the objective function of explainability; rather,

evaluation can only be performed by the end user as, ‘‘you’ll

know it when you see it.’’ Third, the level of explanation needed

for a complex AI model also depends on the expertise and ability

of understanding the explanations by the users who receive and

finally interpret them.25 What may be interpretation for a

specialist physician is very different for a general physician, biol-

ogist, or computational biologist. Past research on this topic has

led to attempts at formalizing the requirements in machine read-

able formats.29 In this paper, we augment such approaches by

identifying distinct personas in the healthcare life cycle and

further define explanations for addressing the particular require-

ments and expertise that are specific for different users.

Following the perspective of Hind,25 centered on healthcare per-

sonas , we further identified three different cases, namely, data

scientists, clinical researchers, and clinicians taking ultimate de-

cisions.58 Although patients are excluded from the types of per-

sonas of XAI models, data generated from sensors and wearable

devices might soon change this. It is to be noted that personas

can broadly relate to the role a person plays for a particular

use case. Thus, a single person can assume the identity of

different personas, e.g., a doctor moving from the clinical

researcher persona to the clinician persona when they move to

the patient bedside. Furthermore, multiple personas may require

deep collaboration to achieve both unique and overlapping tasks

performed by them, e.g., several departments of a multi-facility

hospitals working together by providing feedback to each other.

Another alternative view of a persona can be correlated with the

mental model59 of the person of interest in the healthcare life cy-

cle. To understand this categorization, let us explore explainabil-

ity as a human factor—an answer to a ‘‘why’’ question. It can be

argued that this viewpoint then requires an explainer and an ex-

plainee. In the case of medical sciences and in the context of AI,

the explainee thus usually falls into the mental models or roles

described in this manuscript. We conducted interviews with a

clinician with clinical research background and, from their

perspective, clinical professionals are, in general, constantly in-

teracting with technology that allows them to gain insights into a

patient’s condition and thus to the condition of a population. It is

not necessary for the patient-facing clinician to understand the

inner workings of a particular technology to be able to extract

the value represented by the insight provided. There are several

examples where technology-driven insights, specifically, soft-

ware-aided technology, do not require detailed understanding

of the inner workings to extract value. Among those, com-

puter-aided imaging techniques are a good example. In general,

it is not necessary for a clinician to get an explanation when

studying anMRI or tomography60–62; it is sufficient to understand
the basics of the technology, particularly its limitations, sensi-

tivity, and specificity, to be able to extract the necessary value.

This could also be true of analog technologies, where under-

standing of the physics of electricity, sounds, or pressure is

not necessary to interpret an electrocardiogram, heart sounds

using a stethoscope, or simple measurement of blood pressure.

This is not to say that a deeper understanding of the technology

does not work in favor of the clinician, but more in the sense of

understanding the general inner workings of a machine each

time that a technology is used. In the case of AI, it could be

argued that a better understanding of the underlying technology

by the user could, at least partially, leads to better understanding

of the ‘‘reasons’’ behind a specific score or AI-derived insight.

The framework presented here also argues that different per-

sonas or mental models will require different types and levels

of explanation, just like different mental models (radiologist,

technician, and medical biophysicist) would require different

levels of explanation out of a digital imaging device; even if these

mental models existed within the same individual, they are in the

end context-driven. Thus, we can argue that the explanation is

driven by the value provided by the technology and, as such,

the tasks and roles of clinician, clinical researcher, and data sci-

entist while overlapping require different levels of understanding.

Ultimately, the human-in-the-loop approach to technology in the

aid of medical history is a long thread of successes, and there

should be no reason to think that AI as an extension of these

technologies would be any different.

To provide a real-world example, let us take disease progres-

sion modeling as a use case to describe what the potential roles

each healthcare persona can play (see Figure 2). The goal of dis-

ease progression modeling (DPM)63 is to model the natural

continuous progression of chronic diseases identifying multiple

irreversible stages, each having diverse disease symptoms. Cli-

nicians are responsible for interacting with the end users, the pa-

tients, and as such they typically use their medical expertise to

define the overall goal of the DPM, mimicking the clinical pro-

gression of the disease through the generation of clinical hypoth-

esis. Most of the time, they focus on the clinical impact of such

models and how to generate actionable insights at different

stages of the disease. Clinical researchers design the overall

input/output of the DPM, where the inputs are typically patient

prior medical history, electronic health records of patients with

the same disease, and any potential clinical hypothesis. The

output of the DPM should mimic the mental model of actual dis-

ease progression mechanisms. Also, higher-level knowledge of

medical informatics and AI both are needed to translate, what cli-

nicians want, to the data scientists who ultimately build the

model. The data scientists take these overall input/output fea-

tures of DPM and make the architecture design of the model

based on the clinical goals as defined by the clinical researchers.

Then, they build the actual DPMmodel using themost viablema-

chine learning tools, which can best cater the needs of clinical

research. In particular, they are responsible for designing model

details, such as number of stages of the model, finding discrim-

inative features to define disease stages, using AI explanations

both at the global and instance level. The clinical researcher

then validates these explanations, performs key performance in-

dicator (KPI) analysis, and assesses their usefulness for gener-

ating clinical insights. After multiple iterations of communications
Patterns 3, May 13, 2022 5



Figure 2. Health XAI Persona continuum and roles
(Top) Different personas relevant for user-centric XAImodels and their domain knowledge and XAI roles. (Bottom) Example of specific roles of three personas for a
real-world problem of designing an explainable progression model for chronic diseases.
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among these three personas, ultimately, clinicians would like to

use the explanations generated by DPM for clinical decision

making to enhance evidence-based medicine.

From this motivating example, and a general view of health

XAI, the desired level of explanations can vary among these

three personas of interest. Researchers/data scientists eval-

uate explanations as measured by the model performance

and AI model transparencies, whereas clinical researchers

aim at further interpreting the model-generated explanations

by assessing their fitness to a few prototypical instances of

particular healthcare applications. In addition, they can perform

a KPI analysis of the XAI models to increase their trust in the

considered clinical practice. Finally, the explanation should

fulfill the requirement of the ultimate end users, i.e., the clini-

cians who have mainly a patient-centric focus of explainability.

Hence, the explanations should mimic the mental model of

clinicians comprising diverse information, such as their

background training, existing medical knowledge, their own

expertise, patients’ prior history, medical norms, patients’

behavioral aspects, etc. Having defined the different explain-

ability-related personas, we will now describe in detail the

most common XAI methods, illustrated with examples. As

shown in Figure 2, the three different personas using AI models

have different requirements, and the term, explanation, has

different meanings, depending on the role they play. Specif-

ically, the researcher/data scientist main role is to build core

AI or machine learning models, whereas the clinician mostly in-

teracts with medical knowledge specific to a particular disease.

On the other hand, clinical researchers act as a bridge between
6 Patterns 3, May 13, 2022
AI experts/researchers and clinicians with brief exposure to

both medical terminology and healthcare informatics.

Applying different XAI methods for extracting
explanations from biomedical data
We will now describe the application of a few of the XAI models,

as described in Figure 1, on specific problems to demonstrate

their usefulness in the clinical and life sciences domains. Note

that the choice of the XAI methods is not exhaustive; rather,

they were chosen based on their overall popularity in the domain

of interest and their availability as user-friendly open-source

tools for better usability. Similarly, we try to cover a wide range

of biomedical applications, including data sources ranging

from electronic health records, genomics, clinical images, etc.

The first explainability methodwewill describe inmore detail is

LIME (local interpretable model-agnostic explanation), widely

used irrespective of domains and data types.64 LIME is a local

method that generates locally trusted explanations, mimicking

the original predictive model in the neighborhood of a particular

sample that is being predicted. LIME falls into the category of a

static model-based approach as it tries to provide an explana-

tion using its own optimization framework (Figure S1A). It is

also a local model, because it provides an explanation for each

individual sample but tries to summarize the local explanations

generated from different samples into a global one. Another

important feature of LIME is that it is a post hoc model-agnostic

method that can extract explanations from any complex model.

In contrast to other explanation approaches trying to modify the

black-box models themselves to generate a simpler surrogate



Figure 3. Applications of four popular XAI methods
(A) LIME optimizes the local faithfulness and complexity of explanation. It has two versions to find both local and global explanations, which we applied on a
COVID-19 longitudinal dataset to represent the clinico-genomic factors associated with COVID-19 severity.65 Local/global importance of single nucleotide poly-
morphisms, indicated by their chromosomic location and clinical variables relative to the patient outcome, are shown in green or red for positive or negative as-
sociation, respectively.
(B) SHAP is a more generalized version of six linear-based explainable models using Shapely regression values. The Shapely regression values are applied on a
type 2 diabetes longitudinal dataset consisting of electronic health records (EHRs); red dots represent variables negatively influencing and blue dots positively
influencing the outcome as shown by the value of the SHAP value.
(C) Contrastive explanation method (CEM) finds the pertinent positive and negative samples that are minimally and sufficiently present and absent for that class,
respectively. (Bottom) Shows the pertinent positives and negative regions of interest (ROIs) of the brain related to an fMRI imaging dataset used to differentiate
between autistic (A) and neurotypical subjects (T), represented in the columns of the matrices. The raw imaging features were summarized into seven brain
regions, represented by the rows in the matrices. Blue hue represents importance of the regions when using the LRB algorithm (left matrix) or CEM (right matrix);
see Dhurandhar et al.36

(D) ProtoDash tries to find prototypes samples by summarizing its underlying distribution, which was applied to order the importance of 19 olfactory descriptors
used to predict the odor of pure molecules as described by 131 descriptors. Note the descriptors order does not change when using only word embeddings for
prediction (ImpSem) or psychophysical olfactory measurements (DirSem).66 For the equation describing each of these methods, see Figure S1B.
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model that can be interpreted, LIME’s final output is the most

important feature used as a best possible explanation of the

black-box model. LIME learns a simple linear function, which

has similar predictive power to the original complex model within

the local neighborhood of a given sample. LIME also provides

the flexibility of choosing features that are easier to interpret,

either from the original raw features or any other representation

of the input features, giving a succinct and short explanation

so that anyone can interpret them.

In its objective function, shown in Figure S1A, f is the original

complex function that LIME is trying to explain for a given sam-

ple, x, and g is the simple explainable model that LIME is trying

to learn within that local neighborhood px. The main objective

function comprises two terms; the first term determines the local

faithfulness of the interpretable model within the local neighbor-

hood of x and the local faithfulness of the two functions f and g

should be similar, at least within the local neighborhood of x.

The second term UðgÞ in the equation controls the complexity

of the explanation itself by imposing some regularization on the
explanation model. Another point we want to emphasize here

is that the input domains of this two functions f and g may be

different based on the problem domain. By minimizing the loss

function, you learn the new explainable model g, which is

much simpler than the original non-explained model f. Another

interesting feature of LIME is that it can also generate global

summary explanations from the local explanation that it has

already generated from the given samples. Sub-modular pick-

LIME (SP-LIME) chooses those samples and features that can

cover most of the cases in a non-redundant fashion, following

a heuristic to generate the global summary explanations from

all the local explanations. As an example, we applied SP-LIME

to extract insights from an algorithm that predicted the severity

of coronavirus disease (COVID-19) based on both clinical and

genomic data of patients in a dataset extracted from the UK Bio-

bank (see Figure 3A).65

Another widely used XAI method is called SHAP (Shapley Ad-

ditive Explanations).21 Being a post hoc static method that uses

a generic version of many different local explainable models to
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rank feature importance based on their explainability, it is taxo-

nomically similar to LIME (see Figure S1B). SHAP provides the

Shapley regression values to rank the features relative to the

tasks being learned and provides different techniques to

compute very efficiently these values, especially in the presence

of multi-collinearity among the features. Also, SHAP provides a

theoretical framework to prove, under certain assumptions, the

unique existence of such local models. Again, similar to LIME,

x and x0 represent two input dimensions; one is for learning the

original predictive model and the other one is for the explainable

model. Given the original function f and a local sample x0, the goal
of any local method is to learn a new function gðz0Þ, where z0 is a
local neighborhood of x0, so that the two functions f and g are

similar in this local neighborhood. SHAP generalizes an additive

feature attribution method, a linear winner weighted summation

of all the feature components 4, whereM is the dimension of this

feature domain z. This generic framework can easily be

cascaded using examples that include LIME,64 DeepLIFT,67

layer-wise relevance propagation,68 and the classic Shapely

value estimation.69

Three properties need to be true in order to generate a theo-

retical solution, using game theory to guarantee that a unique

local linear expansion model is always available. The first

property, related to the Shapley regression value 4, can be in-

terpreted as a surrogate for feature importance and is trying to

determine the difference between the function scores, when

any subset of the given features is included. Hence, given a

local sample x, the model f first behaves similarly for the

simplified input x0, at least within the local neighborhood of

the region. The second property is missingness, such that

with the transformed simplified feature space, if x0 is zero,

then the shapely regression value 4 should be also zero.

Finally, the third property is consistency; this property con-

siders that if the contribution of a particular feature is constant

regardless of other inputs, when you change the model pa-

rameters, then the input attribution 4 should not decrease. If

these three properties are present, a unique local linear

expansion model can be obtained. The shapely regression

value is computationally expensive, and approximate algo-

rithms are provided to find these shared values efficiently,

namely four different algorithms, the model-agnostic Shapely

sampling values, KernelSHAP, MaxSHAP, and DeepSHAP.

Intuitively, the SHAP value increases in the predictive perfor-

mance when including a particular feature into the model

framework. Indeed, if the expected predictive performance in-

creases, or follows a similar dimension, then the SHAP values

are higher compared with when values are not good and some

multi-collinearity is present. Hence, the SHAP values repre-

sent feature importance of the task being learned within a

local neighborhood.

We applied SHAP to understand time to event predictions of a

method predicting, in a cohort extracted from a private claims

dataset (Marketscan),70 complications of type 2 diabetes. In

this cohort, we identified the first event of type 2 diabetes

(T2D) diagnosis and predicted using deep learning models the

onset of neuropathy complication, a typical complication associ-

ated with this disease. Applying SHAP on the DeepSurv model

(Figure 3B) shows that being male or having other nervous sys-

tem disorders increases the risk of neuropathy whereas patients
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with disorders of lipid metabolism have lower risk of developing

such neuropathy.

The contrastive explanation method (CEM)71,72 is a more

recent method that has been successfully applied to many

different domains because it provides natural explanations not

only in terms of the positive features but also the negative ones

(see Figure 3C). It is a local, static, post hoc model, with similar

position as SHAP and LIME in the taxonomy (see Figure 1).

Two terms are critical to understand this method, pertinent

positives and pertinent negatives. The former represents the fea-

tures that should be minimally and sufficiently present for a clas-

sifier to predict from the same class, and the latter defines the

features that should be minimally and necessarily absent for

the classifier to not predict the opposite class.

To determine pertinent negatives, the loss function of CEM

is composed of three parts (Figure S1C). The first is used to

perturb a sample xo by d to make it belong to any other class

but the given class. The confidence parameter k provides an

additional separation between the two predicted classes of

xo and xo + d. The next term in the loss function is the regula-

rization term, which is an elastic net regularization using L1

and L2 norms, particularly useful for large amounts of data.

The last part of the loss function is the auto-encoder recon-

struction loss, ensuring that the original given sample xo and

the partner sample xo + d are similar, as assessed by the L2

norm reconstruction error of the auto-encoder. A similar loss

function can be defined for finding pertinent positives as

well, the difference resting in the first part, such that the

perturbation is defined as being the union of the same classes

of samples, and the perturbed sample xo + d will have the

same class as the original sample xo.

Figure 3C shows the application of theCEMalgorithm to abrain

fMRI imaging dataset used to differentiate between autistic and

neurotypical subjects.36 The raw imaging features were summa-

rized into seven brain regions, which are shown in Figure 3C

(left), and each row in the middle matrices represents a region of

interest, while the columns represent a subject which has to be

classified as either autistic or neurotypical. The two heatmaps

show the results of CEM algorithm and the right shows the LRB

algorithm. As we can see here, the CEM algorithm highlights

two different coefficients, one for pertinent positive and another

for pertinent negatives, because LRP only highlights feature

importancebya single entry in theheatmap. This shows the effec-

tiveness of the CEM algorithm, which can identify both pertinent

positives and also pertinent negatives for each of these subjects.

Finally, the results are consistent between these two algorithms

because two regions of brain, namely DMN (default mode

network) and VIS (visual cortex), are mostly related to autism.

However, theCEMmethod providesmore detail about how these

two regions are related to autism in terms of whether they are

pertinent positives or pertinent negatives.

The last method here presented is called ProtoDash,33 a

static, local, post hoc model that relies on the data to generate

explanations and hence can take any complex model (see

Figure 3D). However, it is significantly different from the previous

methods, given that instead of generating features, it produces

as explanation representative samples from the dataset that

summarize its underlying complex distribution. ProtoDash gen-

erates these representative samples by assigning non-negative
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weights of importance, and it not only can find prototypes for a

given dataset but also outliers.

The approach can be defined as finding a subset S of a collec-

tion V of items; these can be data points and features that maxi-

mize a scoring function (see Figure S1D). Thewhole framework is

built on the important property called sub-modularity of the

scoring function fðSÞ, such that, given two sets S and V, we

want to find a data sample I that does not belong to T and holds

the following property: the functional score when sample I is

included in a subset increases the score fðSÞ more than when

we add that sample I to the superset T. If this condition is main-

tained, a theoretical property guarantees that you can find sam-

ple prototypes very efficiently. However, it is computationally

expensive to guarantee the sub-modular property of an algo-

rithm, so a class of approximate sub-modular functions need

to be defined to implement an efficient algorithm to search for

this kind of prototypes. The scoring function, which holds the

sub-modular property, works for any symmetric positive definite

matrix. Existing state-of-the-art methods require further condi-

tions imposed on the kernel matrix. In contrast, ProtoDash can

generalize those kernels by using only symmetric positive defi-

nite kernels, with the expense of forgoing the sub-modularity.

Figure 3D shows the application of ProtoDash to understand

the performance of a model that uses semantic embeddings to

predict the rating values of 131 olfactory descriptors (violet, pine-

apple, sour, etc.) for 128 pure molecules from imputed (for 70

molecules) and measured values (for 58 molecules) of 19 olfac-

tory descriptors.66 ProtoDash prioritizes the 19 perceptual

descriptors used by the model and shows that as the number

of descriptors increases, prediction performance generally in-

creases, also showing that indeed the descriptors were chosen

correctly and represent the most informative samples of the

dataset

Knowledge transfer for explainability
Knowledge transfer methods73–75 can be used, in the context of

explainability, to extract information from a high-performing

black-box model to boost the performance of a low-performing

interpretable simple model, such as a decision tree or a support

vector machine (see Figure 4A). Three situations typically de-

mand this, the first one being when a subject matter expert

(SME) wants to use a trusted model they understand and in

this case the transfer methods are used to maximize the perfor-

mance of the SME preferred model. The second case entails a

situation with a small amount of data, where a complex black-

box model has been trained on a large public or private dataset

and has to be applied to a smaller amount of data, over which it is

but reasonable to only train a simple model because compli-

cated models could overfit the dataset. The motivation for

such approaches derives from the large body of work on transfer

learning and more recently on foundational models.76 The third

situation arises when computational resources are constrained,

such as the model being deployed on a cell phone or an

unmanned aerial vehicle (UAV), which elicits strict memory

and computational constrains, only allowing a simple model to

be deployed.

One of themost popular techniques that transfers from a com-

plex black-box model to a simple model is known as knowledge

distillation.73 This method alters the target fitted by the simple
model . It does so by fitting soft predictions, i.e., the predicted

probability of a data point belonging to one of the classes of

the complex model and not the class itself, where the softness

can be changed by tuning a temperature parameter. Model

compression77 is a specific case where hard labels of the com-

plex model can be fitted to, i.e., the predicted class for a sample

point, leading in some cases to improved simple models.

The second class is sample re-weight-based methods, such

as ProfWeight78 (Figure 4B), where, instead of changing the

target, you re-weight the samples, hence re-weighting the loss

function of the simple model. Because generally neural networks

are not good estimators of densities, the confidence of the accu-

racy of their predictions is not reliable. The solution for this entails

attaching linear classifiers, which are termed probes, to the inter-

mediate layers of this neural network and calculating for every

training sample the probability of classifying it into the correct

class. The gradation across probes of the difficulty to classify

samples is obtained by averaging across samples and it is

used to weight the loss function of a simple model in order to

retrain it. If the simple models do not use weighted loss functions

for training, the training set can be re-sampled according to their

difficulty following re-weighted ratios. SRatio is a more recent

example of a re-weighting method and consists of using as a

weight the probes average of the performance across samples,

divided by primary confidence estimate for the input of the sim-

ple models, rather than just the average.75 This approach can be

used not only for neural networks but for any type of model.

The third class of knowledge transfer to simple models con-

sists of constructing a globally explainable model from local ex-

planations (Figure 4A, left). SHAP21 and LIME64 can be used to

obtain local explanations and then integrated into global expla-

nations (see TreeExplainer79 and model agnostic multilevel

explanation [MAME]80). A third method, called the global Bool-

ean formula learning (GBFL) method,81 can take local contrastive

or counter-factual explanations and create globally transparent

rules, which can then be used to build a classifier. The common

point of these three approaches is that they transfer information

from the complex black-box model through local explanations,

to create a global understanding.

Visualization as an explanation
We have discussed the potential solution of implementing trans-

parent models to meet the concerns that researchers or clini-

cians may have using black-box models, such as the impression

that they learn unreliable signals, amplify existing biases, or sim-

ply do not bring real knowledge. However, transparent models

need to be understood and often the user does not have the

required expertise in data science. Interactive visualizations

can be a solution, generating trust and understanding by facili-

tating the inspection and interpretation of models while easily

conducting their analysis.82 We will now present the four

different types of visualization that exist and their motivation

(Figure 5), while also discussing the use of these types of interac-

tive visualizations for three kinds of personas: researchers/data

scientists, clinical researchers, and clinicians (Figure 6).

The first type of visualization tools is explainers; they provide

web-based tools in which users can learn how a model is

trained from a dataset and how it makes inferences on new

data points. They provide self-paced tutorials with scrollable
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Figure 4. Knowledge transfer for explainability
(A) Scheme of transfer learning from a complex model to the right to a simpler one to the left, where a globally explainable model was constructed from local
explanations.
(B) (Left) Example of a neural network with two hidden layers and the associated probes, i.e., linear classifiers. To the right are shown (top) an easy example of a
number 7 from the MNIST (Modified National Institute of Standards and Technology) dataset to be classified and a hard example on the bottom, with their asso-
ciated area under the curve (AUC), approximated by taking averages of the classification performance of the two probes. The probe output is an indication of how
easy or hard that example is to classify. The easy example obtains good classification from the first layer, but the hard example, as 7, is not well written; it is very
hard for the neural network to classify it correctly. Only when reaching higher-level probes, essentially a deep neural network, the performance is high. (Right) The
AUC is then used to weight the loss function of a simple model and retrain it. If the simple models do not use weighted loss functions for training, the training set
can be re-sampled according to their difficulty following re-weighted ratios.
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walkthroughs and more interactive playgrounds. Examples are

R2D3 for decision tree models,86 GAN live87 for generative ad-

versarial networks, and CNN Explorer for convolutional neural

networks.88 Explainers are gaining traction as more academic

and non-academic venues, such as Distill.pub or VISxAI, appear

to present such tools.

The second category is visualization for model debugging and

inspection, developed to understand machine learning models,

inspect any issues, and gain insights on how to improve the

model. These visualizations provide interactive visuals tailored

for such tasks and show activation of neurons, aggregates of

them in different layers, or visualization of attention scores.

Users can gain an overview and also query details on demand.

Examples of such types of visualization techniques include

LSTMVis,89 CNNVis,90 Seq2seqVis,91 and SANVis.92 The third

type of visualization tools is designed to support users’ data

analysis tasks in their domain study (Figure 5). The views provide

information that are useful to answer questions that users have.
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In particular, users can conduct what-if scenarios by perturbing

input data values and checking how decisions are impacted by

changes.93 They allow users to compare multiple model in-

stances by showing differences in model outputs from same

data input instances. Prominent examples of such what-if

models are Clustervision,94 RetainVis,83 FairVis,95 etc. The

fourth category consists of visualization methods developed

specifically to make more useful explainability methods. SHAP

is a great example, because it provides simple toolkits to visu-

alize the results of SHAP learning explainability in an interactive

computing environment like Jupyter Notebook (Figure 3B).

Three use cases for three different personas
We now will present applications of visualizations for three

different kinds of researchers (Figure 6). For researchers/data

scientists, we integrated a visualization tool to the previously

described model-agnostic methods of ProtoDash and CEM,

so that users can generate and interpret explanations for



Figure 5. Example of what-if analysis tools
(Left) RETAINVis83 RNN ’’RETAIN’’ model, showing the contribution to the overall outcome of patient visits through feature contribution score, representing
drugs (violet), diagnosis (yellow), or physiological markers (green) for each visit. (Bottom) Patient list shows individual patients in a row of rectangles. In the patient
list, users can select a patient of interest to view details, shown below, and edit patients to conduct a what-if analysis. (Right top) Dimensionality reduction
techniques like t-SNE (t-distributed stochastic neighbor embedding) result in the blue scatterplot to gain an overview and then build patient cohorts using the
lasso selection tools and take a look at the distribution for demographic information like biological sex, age, and risk prediction scores (red circle). (Right bottom)
Contribution scores for each visit and patient details are shown after the updated results of the what-if analysis. In the middle, an area chart shows aggregated
contribution scores of nine medical codes over time. It shows mean and standard deviation as an area. Users can also see the medical codes and their
mean contribution scores in bar chart.

ll
OPEN ACCESSPerspective
representative samples from a population dataset (Figure 6A). An

example of this tool entails training a model to predict unplanned

patient re-admission risks from clinical claims datasets that

include millions of patients with more than 300 different features.

A recurrent neural network was used to learn sequential and

temporal patterns as ProtoDash generates representative exam-

ples that best summarize the complex data distribution of the

population dataset. For every model decision, CEM also gener-

ates pertinent negatives and pertinent positives. In future work,

we plan to implement the technique as a full-fledged interactive

visualization system and also make CEM and ProtoDAsh more

interactive.

For the second user type and through a collaboration with

several clinical researchers, we explored what patient informa-

tion needed to be collected frompatient records or observational

studies, to study their disease progression trajectories85

(Figure 6B). Overall, clinicians wanted to learn how patients

develop diseases over a certain observed period of time and

the association between these and the patient characteristics.

Because discovering and summarizing trajectories is chal-

lenging, especially when they involve evolution of multi-di-

mensional variables across time, clinical researchers need to

participate in the investigation and extraction of disease pro-

gression trajectories. We used a hidden Markov model (HMM)

to summarize the states of patient’s disease status as a function

of their age and other variables, to facilitate the understanding of

their progression using these state sequence patterns. In the di-

agram in Figure 6B, a patient has four different visits where mul-

tiple laboratory test results were collected. We selected a set of
variables to train themodel with a parameter defining the number

of states the model learns in an unsupervised manner. HMMs

find some most probable state based on the time or age with

the values of the selected variables that the model can assign

the most probable state sequence by applying the Viterbi algo-

rithm96 on posterior distributions over states. The model can

summarize a patient’s disease development using the sequence

of states, and the state can be manifested by distribution or by

use over the selected variables. However, because it is not

easy to interpret HMMs, clinical researchers need visual aids

to drive the analysis because they want to interpret the state’s

distribution across variables, gain a summary of state transition

patterns or subjects, and find the associations between mea-

sures and trajectories. DPVis is designed to fulfill the needs of

visual support and allows users to visually explore disease pro-

gression pathways while understanding state characteristics,

build cohorts, and visually compare them. Finally clinicians

also want to compare trajectories, genetic profiles, and various

characteristics of patients between subgroups. Using a dataset

of type 1 diabetes, we explored observational data of 559 pa-

tients who were ultimately diagnosed with this disease and

observed until ages up to 20 years old. We modeled the HMM

using three islet auto-antibodies (IAs) and 11-state models.

The goal was to explore the heterogeneous pathways before a

type 1 diabetes diagnosis with the evolution of IAs for patients.

DPVis has two main views, clinical data matrix and pathway

waterfall (see Figure 6B), respectively explaining the states

discovered by HMMs by showing distribution of data attribute

values and showing the progression patterns for all subjects in
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Figure 6. Visualization and explanations for three types of users
(A) ProtoDash and CEM Explorer84 allow data scientists to inspect the trained model using the contrastive explanation method. The examples shown are related
to an RNN model predicting in patient re-admission risk based on previous emergency room (ER) visits and variables extracted from insurance claims, such as
hospital-acquired condition, vascular-catheter-associated infection, length of stay, number of diagnosis on claims, and number of prior ER visits. Each repre-
sentative patient (yellow line and yellow dot) is extracted using ProtoDash, and then CEM is used to obtain explanations, as represented by the different colors:
red box, inpatient; yellow box, outpatient; and green box, skilled nursing facility (SNF).
(B) DPVis85 helps clinical researchers to understand the disease progression patterns by interacting with multiple, coordinated visualizations. (Top) Represents a
diagram of a hiddenMarkovmodel (HMM) and the used/unused variables to find disease progression states using different visits over time. The HMMextracts the
most probable sequence of states for a specific patient. (Bottom) The waterfall view shows the state progression patterns and time/age for each patient (rep-
resented by a line) over time as well as the age distribution at diagnosis for all the cohort (red) and the selected cohort (yellow). Overlap is shown in orange.
(C) RetainVis83 can help clinicians test how (top) an RNN-based model performs on a set of patients by conducting various what-if analyses. (Middle) Single-pa-
tient view of the feature contribution score, representing drugs (violet), diagnosis (yellow), or physiological markers (green) for each visit in the treatment pathway.
(Bottom) Questions can be answered by editing patient visits, because medical records and update timestamps can be modified for each visit obtaining new
predictions and contributions over patients visits by re-running themodel. Contribution scores show howmuch eachmedical code and visit affects the prediction
score at the end. Top contribution scores can be also generated per patient and for multiple patients by aggregating the scores.
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cohort. It is also possible to compare two different states based

on overall distribution of data values across multiple core fea-

tures. Figure 6B shows the benefit of visualization in this sce-

nario, where clinical researchers need explanation, exploration,

and interaction in order to use HMM for their clinical and analytic

goals.

Finally, for clinicians, the third user type, we trained models to

predict the health outcomes, such as admission, onset, or death,

based on electronic health records, such as diagnosis, medica-

tion, and procedures, over time. Electronic health records are se-

quences over time of medical records, so it makes sense to use

recurrent neural networks (RNNs) in order to take into account

sequential patterns for computing outcome scores (Figure 6C).

However, clinicians want to know why and how the model

reached a conclusion, i.e., ‘‘what-if’’ questions. For instance,

they ask questions, such as, What was the most influential visit?

Which diagnosis was the most influential? Will the outcome be

different if the patient had received testing earlier? and How

can this be done for multiple patients? So, clinicians want to un-

derstand diagnostic risks predicted by the model and want to

perform this on multiple patients with various conditions. For

this example, we used International Classification of Diseases,

Ninth Revision (ICD-9) codes from 5,962 patients’ data with heart
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failure pulled from health records. We used a modified attention-

based RNN model, called reverse time attention model

(RETAIN)97 and RETAINVis,83 to support similarity analysis

(Figure 6C). ‘‘What-if’’ questions can be answered by editing pa-

tient visits, because medical records and update timestamps

can be modified for each visit obtaining new predictions and

contributions over patients’ visits. When multiple medical codes

are collected, feedback can be provided so that the model can

actually increase the attention scores for the selected medical

codes and see how they affect the decisions for selected pa-

tients. Data values for a particular patient can be edited to

conduct a what-if analysis. Visual analytic methods like

RetainVis best improve explainability of RNNs through visualiza-

tions and interactivity for experiments. It is also possible to do a

mix initiative ofmodel exploration and improvementmethods us-

ing humans and AI through visualizations; future work is needed

to learn how to minimize false predictions and explain model fail-

ure with examples. This work needs to include clinicians for

continuousmodel improvement while taking into account human

biases and to learn how to communicate uncertainties and

biases of the trained model. We also expect that tools as such,

presented here, will help develop subgroup-based explainability

in contrast to global/local interpretability, where the explanation
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is needed for a particular subset of populations (e.g., for a partic-

ular ethnic group or gender or age group). So, the explanations

will be applicable for a smaller group of individuals instead of

global model explanations or a single individual-based interpre-

tation.98

DISCUSSION

In this review, we presented popular approaches to extract

explainable knowledge from the kind of black-box machine

learning models that are becoming prevalent with the advent of

deep learning in both life science research and more clinical-ori-

ented environments. To help navigate the different options in

XAI, we propose not only a taxonomy of available model types

but also, to help fill the explainability gap, we underline the

importance of having a user-centric approach to select the

adequate XAI model as well as the format/visualization in which

its results will be presented. The purpose was not to perform an

exhaustive description of explainability99 but to describe prac-

tical uses with examples in life sciences and a focus on user-

centered XAI in clinical use cases related to healthcare around

the concept of persona.

Although such methods can lead to an increased trust in using

AI applications, recent literature also provides critiques of certain

class of XAI methods41 as well as how their improper usage can

lead to unwarranted trust in underlying AI systems where such

methods may not be applicable.54,55 Indeed, although the state

of the art changes rapidly and new neural network architectures

are been developed to be directly interpretable by design,100

most XAI methods are fundamentally post hoc in nature and

perform a global explanation through the aggregation of local

ones. Hence, XAI methods cannot compete with directly inter-

pretable methods, where the dependency between the input

variables and output predictions is global and transparent. Simi-

larly, visualization in itself cannot be the only method to gather

explanations; we advocate that this in conjunction with other di-

mensions/tools for explainability do indeed form a useful system

for the end user to iteratively improve their understanding.

Finally, we also think that a back-and-forth argument relative

to whether an explanation is sufficient or satisfactory, i.e., inter-

pretable, should be framed in the context of the development of

quantitative metrics of XAI to allow direct comparison of different

explanations. This has already been done in the context of model

selection101,102 and model comparison.103

Conclusions
In life sciences, the open discussion on the explainability and

interpretation of innovative black-box solutions has progressed

with the popularity of these approaches but in part also through

the development of crowdsourcing platforms and competi-

tions.104 For the former, it has happened through the ‘‘wisdom

of the crowd’’ solutions that ensure not only the most robust

and often the best prediction but also unearth the most

frequently used features for prediction present in the datasets,

thus generating confidence and global explainability of the pre-

diction results.1 Both approaches help fill the gap between

model-directed explainability and user-dependent interpret-

ability because they also focus on communities of interest that

have specific domain knowledge. In the healthcare domain, ex-
plainability can help generate trust in AI services used, comple-

mented by the implementation of general safety and reliability

engineering methodologies, with identification of new AI specific

issues and challenges and transparent reportingmechanisms on

how services operate and perform. This has to be coupled with

stringent tests regarding whether the XAI is robust to variations

of inputs or with additional data and for some higher-risk appli-

cations with well-designed clinical trials. For now, in research,

the same type of procedures also needs to be implemented,

i.e., using a variety and diversity of datasets, with the sole goal

of generating trust in the knowledge generated by the XAI. The

ultimate goal of adopting AI in medical practice and patient

care goes beyond explainability and will need the development

of extra layers of security and confidence, in particular regarding

AI trustworthiness, as XAI transparent systems become prone to

attacks that may reveal confidential information, and AI fairness,

as systems developed and tested, in particular socio-economic/

racial environments, need to be expanded to real-world situ-

ations.105,106
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