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ABSTRACT

Recently, deep learning has gained exceptional popularity due to its

outstanding performances in many machine learning and artificial

intelligence applications. Among various deep learning models,

convolutional neural network (CNN) is one of the representative

models that solved various complex tasks in computer vision since

AlexNet, a widely-used CNN model, has won the ImageNet chal-

lenge1 in 2012. Even with such a remarkable success, the issue of

how it handles the underlying complexity of data so well has not

been thoroughly investigated, while much effort was concentrated

on pushing its performance to a new limit. Therefore, the current

status of its increasing popularity and attention for various appli-

cations from both academia and industries is demanding a clearer

and more detailed exposition of their inner workings. To this end,

we introduce ReVACNN, an interactive visualization system that

makes two major contributions: 1) a network visualization mod-

ule for monitoring the underlying process of a convolutional neural

network using a filter-level 2D embedding view and 2) an interac-

tive module that enables real-time steering of a model. We present

several use cases demonstrating benefits users can gain from our

approach.
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1. INTRODUCTION

Recently, deep learning has made major breakthroughs in many

machine learning problems such as computer vision [6] and speech

recognition [4]. A traditional neural network model is basically

composed of multiple layers, each of which contains multiple nodes

where each node is computed as a linear combination of nodes in

the previous layer, followed by a nonlinear transformation such as

a sigmoid, a tanh, a softmax function. However, neural network has

not been widely used until recently since it was difficult to train due

to the significant computing time, its sensitivity to initialization and

hyper-parameters, and other issues. Various treatments have been

proposed including dropout [9], batch normalization [5], and alter-

native nonlinear functions such as a rectified linear unit [8], which

successfully handled most of the existing issues.

Beyond the traditional model, the neural network structure has

evolved in various forms, leading to tremendous success in impor-

tant applications. Largely responsible for this recent success is con-

volutional neural network (CNN), a type of neural network suited

for real-world image classification tasks. Although convolutional

neural networks have been originally proposed by LeCun et al. [7]

back in the early 1990s, demonstrating an outstanding performance

in hand-written digit recognition, it was not widely used until 2012

when Krizhevsky et al. [6] achieved a superior performance on im-

age classification tasks in ImageNet challenge, using a deep archi-

tecture model of convolutional neural network. This propelled ma-

jor research movement towards creating variants in architectures

and improving algorithms for even higher performance. In just few

years, much progress has been made to the point of approaching or

even surpassing human abilities in various challenging tasks.

While making significant achievements, the understanding of un-

derlying processes in these models received less examination, and

the need for tools and techniques for exploring and understand-

ing the inner workings of these various models ensued. However,

complicated deep learning structures are difficult to understand.

Different types of layers such as convolution, pooling, and fully-

connected layers interact with each other, handling different parts

of data characteristics. Furthermore, each layer has different sets

of hyper-parameters to determine before training the model. Thus,

such a model selection process including setting the number of lay-

ers and nodes, and hyper-parameter values has not been intuitive

nor straightforward, leaving users with no idea about how to prop-

erly perform this process.

In addition, the significant amount of time required to train a

deep learning model has made the training process largely detached

30



from dynamic user intervention. For example, a recently proposed

model called ResNet [3], which is considered one of the state-

of-the-art models, takes days to weeks to train using ImageNet

datasets with the fastest graphics processing unit available.

In response, we propose a proof-of-concept visual analytic sys-

tem for allowing users to understand and steer a deep learning

model in real time during the training process. To the best of our

knowledge, our system is one of the first systems that visualize de-

tailed information about the model during the training process and

support dynamic user interactions with the model in real time.

In particular, the main contributions of this paper are summa-

rized as follows:

• Real-time visualization of how each node/filter in a deep learn-

ing model is trained, e.g., the stability of nodes/filters and the

relationships between them

• Real-time model steering by dynamically adding/removing

nodes and layers during the training process

The rest of this paper is organized as follows. Section 2 discusses

related work. Section 3 presents detailed description of our sys-

tem and its visual components. Section 4 presents usage scenarios.

Finally, Section 5 concludes our discussion with plans for future

work.

2. RELATED WORK

In this section, we discuss recent efforts towards interactive vi-

sualization of deep learning for its in-depth understanding and user

control.

Bruckner et al. [1] developed the system called deepViz, an in-

teractive visualization based on the timeline framework that shows

the heatmap representations of filters in each layer, the confusion

matrix, and the clustered images at different checkpoints for un-

derstanding and diagnosing the network. Zeiler and Fergus [12]

showed the practical application of a visualization system for the

diagnostic purpose by utilizing a feature inversion technique called

deconvolution to refine the model and further improve performances.

With the system that visualizes live activations in real time and fea-

tures at each layer, Yosinski et al. [11] made contributions to the

visualization of convolutional neural network by providing several

new regularization methods that produce qualitatively clearer visu-

alization of images.

More on the interactive visualization side, a web-based imple-

mentation, such as ConvNetJS 2, made training convolutional neu-

ral network possible in a browser using the Javascript library. In

addition, Bolei et al. [13] developed another web-based interface

where a user can select an activation of a particular data item at

a particular layer and check the highly activated nodes together in

the other layers.3 Harley et al. [2] visualized a convolutional neu-

ral network in a three-dimensional space where the network struc-

ture and the used images are shown simultaneously. Additionally,

Google’s TensorFlow library provides a graphical user interface

called TensorBoard4, which visualizes neural network as a compu-

tational graph where users can check the status of the trained model

and change the detailed configurations. More recently, Google

also made a web interface called TensorFlow Playground5 pub-

2http://cs.stanford.edu/people/karpathy/convnetjs/
3http://people.csail.mit.edu/torralba/research/
drawCNN/drawNet.html
4https://www.tensorflow.org/versions/r0.8/how_tos/
graph_viz/index.html
5http://playground.tensorflow.org/

licly available so that users can play with neural network models

using several toy data sets. On the other hand, NVIDIA developed

its own deep learning library and a web-based monitoring system

called DIGITS.6

Even with these various efforts, there exist significant room to

improve the interactive visualization aspects of deep learning mod-

els along with the recent advancement in this area. Among them,

real-time monitoring and steering of deep learning has not been

properly addressed, which is the focus of our system proposed in

this paper.

3. REVACNN: REAL-TIME VISUAL ANA-

LYTICS FOR CONVOLUTIONAL NEU-

RAL NETWORK

To empower users to dynamically monitor and interact with a

convolutional neural network in real time during its training stage,

we propose ReVACNN. In this section, we present (1) the system

overview, (2) the visualization modules for real-time monitoring

and steering of the model, and (3) the implementation details of

the proposed system. The front-end of our web-based system is

implemented using HTML, CSS, and Bootstrap. D3.js7 is used for

animating filters (‘jittering’) in the diagram. All the computations

are currently performed with Javascript in the browser on the client

side.

3.1 System Overview
The main goal of our system is to provide real-time steering ca-

pabilities in an easy-to-use manner. To this end, we decided to

build our proof-of-concept system based on Javascript-based deep

learning library called ConvNetJS.8 In contrast to other major deep

learning libraries such as Theano, Tensorflow, Torch, and Caffe,

ConvNetJS runs completely in an easily accessible web browser on

the client side, which is appropriate in visualizing dynamic changes

of deep learning models and responding immediately to user inter-

actions in real time. Note, however, that in exchange of such ease

of use and real-time interactivity, ConvNetJS that our system uses

lacks the GPU-based acceleration of computations that most of the

other major libraries offer. In the scope of the current paper, we

mainly investigate the real-time visualization capabilities for view-

ing and steering the deep learning process, using ConvNetJS as an

example. We leave the topic of integrating other libraries with our

real-time visual analytics system as future work.

In fact, our visual interface is built upon the implementation of

CIFAR-10 demo using ConvNetJS,9 as shown in Fig. 4, which uses

the CIFAR-10 dataset10 for object recognition. In addition, we de-

veloped additional capabilities of monitoring and steering the CNN

model in real time. In summary, the main functionalities of Re-

VACNN we added are as follows:

• Network visualization and configuration view. This mod-

ule provides users with a visual overview of the network and

more importantly, the ability to monitor the dynamic train-

ing process in real time. Moreover, users can modify the

network dynamically and incrementally, adding or removing

nodes and layers with simple “point-and-click” interactions.

6https://developer.nvidia.com/digits
7https://d3js.org/.
8https://github.com/karpathy/convnetjs
9http://cs.stanford.edu/people/karpathy/convnetjs/
demo/cifar10.html

10https://www.cs.toronto.edu/~kriz/cifar.html
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(a) Filters in conv1 layer (b) Filters in conv2 layer

Figure 1: Filter coefficients in AlexNet

(a) 1st convolution layer (b) 5th convolution layer

Figure 2: Activation maps in AlexNet [6]

• Filter-level 2D embedding view. This view shows the re-

lationships of individual filters/nodes at a particular layer as

a 2D embedding view. To generate such a view, we utilize

a t-distributed stochastic neighbor embedding (t-SNE) [10].

Using the vector representation of each filter, we allow users

to flexibly choose one among its filter coefficients, filter gra-

dients, its activation map of a particular image, and its activa-

tion gradient maps so that users can explore various aspects

of filters that are being trained.

The details of the above functionalities our system provides will be

further discussed in Section 3.2.

3.2 Network Visualization and Configuration
To facilitate the understanding of how each node/layer has been

trained, it is important that we directly interpret the filter coeffi-

cients, which correspond to the linear combination of coefficients

or weights assigned to different positions of pixels in an image.

In addition, given an image, an activation map corresponding to a

particular filter gives another insight from the perspective of how

much the filter gets activated depending on the image. For exam-

ple, Fig. 1 shows filter coefficients found in AlexNet. Since the

first-layer weights, as shown in Fig. 1a(a), are the filters directly

looking at the raw pixel data of an input image, their images are

often the most interpretable among the filters from all the other

layers. However, as layers deepen, their meaningful interpretation

becomes increasingly challenging. Fig. 1b(b) shows that the filters

found in the second convolution layer are too complex and vague

to be informative. Normally, an analysis of the first-layer weights

can help users recognize whether the network has been successfully

trained. Users can assess the success of training based on whether

trained filters have smooth transitions among them so that they can

capture as diverse patterns as possible. However, since such anal-

ysis relies on subjective judgment, it is clear that users need addi-

tional evidences to decide whether such argument is reasonable.

Additionally, Fig. 2 shows the activation maps found in the first

and fifth convolution layers. Clearly, it is difficult to make sense of

the activation maps in deeper layers because they are representing a

composite mixture of already complex patterns. Also, these activa-

tion maps are shown to be relatively sparse, which means that the

majority of pixels in these activation maps are mostly zero given

an input image. This indicates that they hardly get activated, which

may not be helpful in generating useful information. Nevertheless,

identifying those filters bearing these characteristics by just look-

ing at these activation maps is a difficult task. Our visualizations

approach helps users handle the task more easily.

3.2.1 Network visualization

As shown in Fig. 3, our network visualization module provides

users with a quick overview of the model. In addition, users can

gain insight from the dynamic evolution of the network during the

training process. In particular, among its various parameters rep-

resenting dynamic evolution of the network, our system highlights

how stable or converged each node is during the algorithm itera-

tions in the form of jittering animation of nodes. That is, those

nodes with a large amount of movements in their jittering anima-

tions indicate that they are being actively trained at a given moment.

The quantitative value to determine this amount is computed as the

magnitude of an average gradient back-propagated per each filter

coefficient in the corresponding node.

In addition, the path connecting two layers shows how input

images are being forward-propagated through the network layers.

That is, the thickness of a path corresponds to the sum of pixel val-

ues on a particular filter in the corresponding layer. Note that only

those whose values belong to the top 50% are configured to be vis-

ible in order to avoid a visual clutter in the visualization module.

This path visualization has additional benefit of helping users iden-

tify how convolution layers are outputting filtered images and most

importantly, which path influences the softmax layer responsible

for classifying an input image. From this visualization module,

users can also easily add or delete filters in the hidden layer with

simple “point-and-click” interactions, and the change in the model

is reflected in real time. The interactive feature helps to steer the

training process of the model.

3.2.2 Training statistics visualization

During training, the loss function serves as a clue for identifying

whether the network is properly trained. Thus, our module, shown

in Fig. 4, displays the training loss as a line chart. Users can keep

track of the temporal progress of the loss function. Since the batch

size is set as four by default, the loss is plotted each time as the av-

erage training loss of a batch of four input images. If the batch size

is modified by users, the loss chart also changes accordingly. In

addition, other statistics, such as training accuracy and validation

accuracy, are updated for each input image and shown to users for

an in-depth analysis. Other hyper-parameters such as the learning

rate, the momentum, the batch size, and the weight decay, can be

modified. To facilitate the understanding of how each node/layer

has been trained, it is important that we directly enables users to

observe changes in the training accuracy immediately. Using the

capability, users can properly adjust learning rates, batch sizes, and

momentum values when the network is stuck in an undesirable lo-

cal minimum.

3.2.3 Filter-level 2D embedding visualization
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Figure 3: Network visualization of ReVACNN

Figure 4: Training statistics view of ReVACNN

As described above, the filter coefficients and the activation maps

have frequently been the main subject of visualization when an-

alyzing a convolutional neural network. In our system, we ex-

plore them using their 2D embedding view computed by t-SNE. As

shown in the left side of Fig. 5, users can open up each layer panel

and observe the 2D embedding view of filter coefficients, filter gra-

dients, its activation maps, and the activation gradients at the corre-

sponding layer by clicking the radio button in the left pane. When

users change the network architecture and initiate training, the left

pane changes accordingly to reflect the model’s layer configuration.

This t-SNE view of the system provides users with the capabilities

of node-level as well as layer-level exploration. In the case of node-

level exploration, users can view the similarity between filter coef-

ficients and activation maps or even activation gradient maps in the

selected layer. In the case of layer-level exploration, the compari-

son of clusters of filter coefficients, the activation maps, the activa-

tion gradient maps between different layers can reveal insights for

understanding of the model and further diagnosis. The usage sce-

narios demonstrating the usefulness of this view will be discussed

in detail in Section 4.

4. RESULTS

In this section, we present two use cases demonstrating the ad-

vantage of our system to monitor and steer the deep learning model

in real time.

4.1 Real-Time Dynamic Model Configuration
In this section, we present four use cases where we can reveal

various insights from our filter-level 2D embedding view in which

a user can extract valuable insights about the model. In these use

cases, we used a CNN model, which has an input layer that takes

in 32× 32× 3 input images and three convolutional layers with a

filter size of 5×5 with the stride size of 1 and padding of 2 where

the three convolutional layers–each of which has 16, 20, and 20 fil-

ters, respectively–have both ReLU and pooling layers behind each

convolutional layer, finally followed by a softmax layer with ten

classes as the last layer of our network.

Cluster patterns. In general, neural network and deep learning

models are sensitive to initialization, hyper-parameters, and other

settings. Thus it is difficult to properly train the model so that it per-

forms reasonably well even for the training data. Our filter-level 2D

embedding view provides important insights about the characteris-

tics of a properly trained model. While training the above-specified

model, we checked the 2D embedding of filter coefficients at 30
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Figure 5: 2D embedding view of ReVACNN

(a) Clear cluster pattern (b) No cluster patterns

Figure 6: Comparison of cluster patterns of filter coefficients

(a) Improperly trained filters (b) Properly trained filters

Figure 7: RGB patterns of the first-layer filters

epochs where the accuracy was quite low, e.g., 0.32. In this case,

the 2D embedding view of filter coefficients shows a clustered pat-

tern among these filters, as shown in Fig. 6a(a). This indicates

that those filters belonging to a particular cluster capture some-

what redundant patterns from input data. In other words, they are

not trained well enough to extract diverse patterns from the train-

ing data. On the other hand, at 120 epochs where the accuracy

reaches 0.78, the 2D embedding view of filter coefficients exhibits

somewhat evenly distributed filters with no clear cluster patterns, as

shown in Fig. 6b(b). This example indicates an important charac-

teristics of a well-trained model that the diversity of trained filters

is generally desirable in achieving a greater classification accuracy.

RGB patterns. The first convolutional layer takes an input im-

age that has the depth of three RGB channels and generates each

filter that linearly combines all the three channels. Similar to the

previous case, when the model is not properly trained, i.e., show-

ing a low accuracy value, we found that a trained filter often re-

flects only a single color channel as opposed to a combination of

all the three color channels, as seen from all-blue colored filters in

Fig. 7a(a). However, as seen in Fig. 7b(b), when the model shows a

relatively good performance, each filter usually combines the infor-

mation from all the color channels. Based on such different RGB

patterns, one can infer that those filters that combine all the chan-

nels of the previous activation maps contribute to improving the

generalization ability of the trained model.

4.2 Steering
In this use case, we set up our model as follows: three convolu-

tional layers followed by ReLU and pooling layers after each con-

volution layer; 20 filters in each convolution layer (based on this

property, we call this model a ‘20-20-20’ model), with the filter

size of 5× 5; a fully-connected layer as the last layer. We trained

a ‘20-20-21’ model and found that this model does not train well,

and its loss function value does not go below 1.48, as illustrated

in Fig. 8a(a). On the other hand, we initially trained a ‘20-20-20’

model, which converged relatively fast and showed a much bet-

ter loss function value well below 1.19. Utilizing our interaction
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(a) 20-20-21 model trained from scratch

(b) 20-20-21 model generated after filter addition

Figure 8: Effects of dynamic filter addition

capability of dynamically adding a node during training in the net-

work visualization module, we added a filter after 15 epochs as the

loss function graph reached a plateau. Accordingly, the model was

dynamically changed from a ‘20-20-20’ model into a ‘20-20-21’

model while maintaining the currently trained model except for the

added filter. Finally, the resulting model still maintained a rela-

tively good loss function value, even experiencing a slight increase

in accuracy at times. Without this dynamic network configuration

process, the ‘20-20-21’ model, which is our target model, would be

more difficult to train from scratch. This shows the importance and

the value of dynamic network configuration in real time during the

training process.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed ReVACNN, a real-time visual analyt-

ics system for a convolutional neural network. It supports exploring

and steering the network by visualizing its layers and nodes. Ad-

ditionally, we provided a filter-level 2D embedding view by apply-

ing t-SNE to various filter information, such as filter coefficients,

filter gradients, the activation maps, and the activation gradients.

Through these capabilities offered by our system, one can obtain

in-depth information such as whether the network is trained prop-

erly or not as well as other insights about the trained filters. By us-

ing such information, one can flexibly steer the model and achieve

better performances.

As our future work, we plan to improve our work as follows:

Real-time monitoring between GPU and CPU. Currently, in

our proof-of-concept system, we relied on ConvNetJS, a Javascript-

based library for deep learning. However, other more scalable li-

braries run most of the intensive computations in GPU, which has

its own memory space separate from that of CPU. However, the

front-end monitoring system usually works on the CPU side, so

in order to truly achieve the real-time monitoring of the training

process, memory copy operations from GPU to CPU should be

frequently performed, which can degrade the computational effi-

ciency of the training process. To handle this issue, some partial

information could be selectively transferred based on a particular

criterion, e.g., only when the nontrivial amount of changes of a

parameter occur. Otherwise, multi-threaded syncing between the

memory spaces of GPU and CPU, which performs memory copy

operations only when the computing resource of GPU is available,

could also be another option.

Advanced dynamic steering capabilities. So far, we provided

the capabilities of dynamic node/layer addition/removal in our sys-

tem. However, many other advanced dynamic steering capabilities

could be developed. For instance, skipping some nodes/layers that

are already trained sufficiently can accelerate the subsequent opti-

mization steps. When nodes/layers are added/removed, their ini-

tialization could be carefully performed so that the newly added

nodes/layers can capture complementary information of data to the

existing nodes/layers. When removing nodes/layers, we could rec-

ommend those that have minimal impact to the overall performance,

e.g., a redundant node from clustered nodes. We may be able to de-

fine the criteria to determine such minimal effects in various ways,

e.g., the variable importance score of each node/layer.
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